Abstract
To improve understanding of environmental tritium behaviour, the International Atomic Energy Agency (IAEA) included a Tritium and C-14 Working Group (WG) in its EMRAS (Environmental Modelling for Radiation Safety) program. One scenario considered by the WG involved the prediction of time-dependent tritium concentrations in freshwater mussels that were subjected to an abrupt increase in ambient tritium levels. The experimental data used in the scenario were obtained from a study in which freshwater Barnes mussels (Elliptio complanata) were transplanted from an area with background tritium concentrations to a small Canadian Shield lake that contains elevated tritium. The mussels were then sampled over 88 days, and concentrations of free-water tritium (HTO) and organically-bound tritium (OBT) were measured in the soft tissues to follow the build-up of tritium in the mussels over time. The HTO concentration in the mussels reached steady state with the concentration in lake water within one or two hours. Most models predicted a longer time (up to a few days) to equilibrium. All models under-predicted the OBT concentration in the mussels one hour after transplantation, but over-predicted the rate of OBT formation over the next 24. h. Subsequent dynamics were not well modelled, although all participants predicted OBT concentrations that were within a factor of three of the observation at the end of the study period. The concentration at the final time point was over-predicted by all but one of the models. The relatively low observed concentration at this time was likely due to the loss of OBT by mussels during reproduction.
Original language | English |
---|---|
Pages (from-to) | 26-34 |
Number of pages | 9 |
Journal | Journal of Environmental Radioactivity |
Volume | 102 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2011 |
Keywords
- Dynamic
- Freshwater mussels
- HTO
- Model comparison
- Organically-bound tritium, OBT