McFTP: A framework for fast thermal managements prototyping on real multi-core processors

Long Cheng, Gang Chen, Jieling Li, Zhihao Zhao, Alois Knoll, Kai Huang

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Nowadays, multi-core processor architectures have been widely adopted in main domains e.g., embedded, general-purpose, real-time systems, etc. Diverse thermal managements have been proposed to manage the temperature under various constraints. This has made the selection of the right thermal management policy difficult. Designers need to validate any resource distribution decision in design phase on the target architecture, e.g., by using a re-configurable thermal framework running in the user-space. In this paper, we first analyze the requirements that such a framework should satisfy. Then, we propose McFTP: a thermal framework fulfilling all the requirements. For this purpose, an intermediate interface is defined to isolate thermal management policies from the low-level implementations. A set of commonly used temperature control mechanisms are implemented as a library which can be accessed via the interface. With these features, McFTP can not only implement a thermal management policy at high-level of abstraction, but also execute the user-defined task-set for real thermal evolution. A soft temperature sensing approach is also developed for processors with no or limited amount of hardware sensors. We demonstrate the effectiveness and efficiency of McFTP by implementing it with two works in the literature on a Dell desktop computer and a Raspberry Pi 3.

Original languageEnglish
Pages (from-to)191-205
Number of pages15
JournalSustainable Computing: Informatics and Systems
Volume22
DOIs
StatePublished - Jun 2019

Keywords

  • DPM
  • DVFS
  • Multi-core thermal managements
  • Task scheduling
  • Thermal framework

Fingerprint

Dive into the research topics of 'McFTP: A framework for fast thermal managements prototyping on real multi-core processors'. Together they form a unique fingerprint.

Cite this