MATAR: Multi-Quantization-Aware Training for Accurate and Fast Hardware Retargeting

Pierpaolo Mori, Moritz Thoma, Lukas Frickenstein, Shambhavi Balamuthu Sampath, Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Walter Stechele, Daniel Mueller-Gritschneder, Claudio Passerone

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Quantization of deep neural networks (DNNs) reduces their memory footprint and simplifies their hardware arithmetic logic, enabling efficient inference on edge devices. Different hardware targets can support different forms of quantization, e.g. full 8-bit, or 8/4/2-bit mixed-precision combinations, or fully-flexible bit-serial solutions. This makes standard quantization-aware training (QAT) of a DNN for different targets challenging, as there needs to be careful consideration of the supported quantization-levels of each target at training time. In this paper, we propose a generalized QAT solution that results in a DNN which can be retargeted to different hardware, without any retraining or prior knowledge of the hardware's supported quantization policy. First, we present the novel training scheme which makes the model aware of multiple quantization strategies. Then we demonstrate the retargeting capabilities of the resulting DNN by using a genetic algorithm to search for layer-wise, mixed-precision solutions that maximize performance and/or accuracy on the hardware target, without the need of fine-tuning. By making the DNN agnostic of the final hardware target, our method allows DNNs to be distributed to many users on different hardware platforms, without the need for sharing the training loop or dataset of the DNN developers, nor detailing the hardware capabilities ahead of time by the end-users of the efficient quantized solution. Models trained with our approach can generalize on multiple quantization policies with minimal accuracy degradation compared to target-specific quantization counterparts.

Original languageEnglish
Title of host publication2024 Design, Automation and Test in Europe Conference and Exhibition, DATE 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350348590
StatePublished - 2024
Event2024 Design, Automation and Test in Europe Conference and Exhibition, DATE 2024 - Valencia, Spain
Duration: 25 Mar 202427 Mar 2024

Publication series

NameProceedings -Design, Automation and Test in Europe, DATE
ISSN (Print)1530-1591

Conference

Conference2024 Design, Automation and Test in Europe Conference and Exhibition, DATE 2024
Country/TerritorySpain
CityValencia
Period25/03/2427/03/24

Fingerprint

Dive into the research topics of 'MATAR: Multi-Quantization-Aware Training for Accurate and Fast Hardware Retargeting'. Together they form a unique fingerprint.

Cite this