Massive MIMO downlink 1-bit precoding with linear programming for PSK signaling

Hela Jedda, Amine Mezghani, Josef A. Nossek, A. Lee Swindlehurst

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

Quantized massive multiple-input-multiple-output (MIMO) systems are gaining more interest due to their power efficiency. We present a new precoding technique to mitigate the multi-user interference and the quantization distortions in a downlink multi-user (MU) multiple-input-single-output (MISO) system with 1-bit quantization at the transmitter. This work is restricted to PSK modulation schemes. The transmit signal vector is optimized for every desired received vector taking into account the 1-bit quantization. The optimization is based on maximizing the safety margin to the decision thresholds of the PSK modulation. Simulation results show a significant gain in terms of the uncoded bit-error-ratio (BER) compared to the existing linear precoding techniques.

Original languageEnglish
Title of host publication18th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-5
Number of pages5
ISBN (Electronic)9781509030088
DOIs
StatePublished - 19 Dec 2017
Event18th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2017 - Sapporo, Japan
Duration: 3 Jul 20176 Jul 2017

Publication series

NameIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
Volume2017-July

Conference

Conference18th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2017
Country/TerritoryJapan
CitySapporo
Period3/07/176/07/17

Fingerprint

Dive into the research topics of 'Massive MIMO downlink 1-bit precoding with linear programming for PSK signaling'. Together they form a unique fingerprint.

Cite this