Mapping quantum circuits to IBM QX architectures using the minimal number of SWAP and H operations

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

137 Scopus citations

Abstract

The recent progress in the physical realization of quantum computers (the first publicly available ones-IBM's QX architectures-have been launched in 2017) has motivated research on automatic methods that aid users in running quantum circuits on them. Here, certain physical constraints given by the architectures which restrict the allowed interactions of the involved qubits have to be satisfied. Thus far, this has been addressed by inserting SWAP and H operations. However, it remains unknown whether existing methods add a minimum number of SWAP and H operations or, if not, how far they are away from that minimum-an NP-complete problem. In thiswork, we address this by formulating the mapping task as a symbolic optimization problem that is solved using reasoning engines like Boolean satisfiability solvers. By this, we do not only provide a method that maps quantum circuits to IBM's QX architectures with a minimal number of SWAP and H operations, but also show by experimental evaluation that the number of operations added by IBM's heuristic solution exceeds the lower bound by more than 100% on average. An implementation of the proposed methodology is publicly available at http://iic.jku.at/eda/research/ibm-qx-mapping.

Original languageEnglish
Title of host publicationProceedings of the 56th Annual Design Automation Conference 2019, DAC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781450367257
DOIs
StatePublished - 2 Jun 2019
Externally publishedYes
Event56th Annual Design Automation Conference, DAC 2019 - Las Vegas, United States
Duration: 2 Jun 20196 Jun 2019

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X

Conference

Conference56th Annual Design Automation Conference, DAC 2019
Country/TerritoryUnited States
CityLas Vegas
Period2/06/196/06/19

Fingerprint

Dive into the research topics of 'Mapping quantum circuits to IBM QX architectures using the minimal number of SWAP and H operations'. Together they form a unique fingerprint.

Cite this