TY - GEN
T1 - Manufacturing Cycle-Time Optimization Using Gaussian Drying Model for Inkjet-Printed Electronics
AU - Tseng, Tsun Ming
AU - Lian, Meng
AU - Li, Mengchu
AU - Rinklin, Philipp
AU - Grob, Leroy
AU - Wolfrum, Bernhard
AU - Schlichtmann, Ulf
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Inkjet-printed electronics have attracted considerable attention for low-cost mass production. To avoid undesired device behavior due to accidental ink merging and redistribution, high-density designs can benefit from layering and drying in batches. The overall manufacturing cycle-time, however, now becomes dominated by the cumulative drying time of these individual layers. The state-of-the-art approach decomposes the whole design, arranges the modified objects in different layers, and minimizes the number of layers. Fewer layers imply a reduction in the number of printing iterations and thus a higher manufacturing efficiency. Nevertheless, printing objects with significantly different drying dynamics in the same layer leads to a reduction of manufacturing efficiency, since the longest drying object in a given layer dominates the time required for this layer to dry. Consequently, an accurate estimation of the individual layers’ drying time is indispensable to minimize the manufacturing cycle-time. To this end, we propose the first Gaussian drying model to evaluate the local evaporation rate in the drying process. Specifically, we estimate the drying time depending on the number, area, and distribution of the objects in a given layer. Finally, we minimize the total drying time by assigning to-be-printed objects to different layers with mixed-integer-linear programming (MILP) methods. Experimental results demonstrate that our Gaussian drying model closely approximates the actual drying process. In particular, comparing the non-optimized fabrication to the optimized results demonstrates that our method is able to reduce the drying time by 39%.
AB - Inkjet-printed electronics have attracted considerable attention for low-cost mass production. To avoid undesired device behavior due to accidental ink merging and redistribution, high-density designs can benefit from layering and drying in batches. The overall manufacturing cycle-time, however, now becomes dominated by the cumulative drying time of these individual layers. The state-of-the-art approach decomposes the whole design, arranges the modified objects in different layers, and minimizes the number of layers. Fewer layers imply a reduction in the number of printing iterations and thus a higher manufacturing efficiency. Nevertheless, printing objects with significantly different drying dynamics in the same layer leads to a reduction of manufacturing efficiency, since the longest drying object in a given layer dominates the time required for this layer to dry. Consequently, an accurate estimation of the individual layers’ drying time is indispensable to minimize the manufacturing cycle-time. To this end, we propose the first Gaussian drying model to evaluate the local evaporation rate in the drying process. Specifically, we estimate the drying time depending on the number, area, and distribution of the objects in a given layer. Finally, we minimize the total drying time by assigning to-be-printed objects to different layers with mixed-integer-linear programming (MILP) methods. Experimental results demonstrate that our Gaussian drying model closely approximates the actual drying process. In particular, comparing the non-optimized fabrication to the optimized results demonstrates that our method is able to reduce the drying time by 39%.
KW - Gaussian drying model
KW - Inkjet printing
KW - Layer assignment
KW - MILP
UR - http://www.scopus.com/inward/record.url?scp=85124123825&partnerID=8YFLogxK
U2 - 10.1109/ICCAD51958.2021.9643436
DO - 10.1109/ICCAD51958.2021.9643436
M3 - Conference contribution
AN - SCOPUS:85124123825
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
BT - 2021 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021
Y2 - 1 November 2021 through 4 November 2021
ER -