Manipulation Planning under Changing External Forces

Lipeng Chen, Luis F.C. Figueredo, Mehmet Dogar

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

We present a manipulation planning algorithm for a robot to keep an object stable under changing external forces. We particularly focus on the case where a human may be applying forceful operations, e.g. cutting or drilling, on an object that the robot is holding. The planner produces an efficient plan by intelligently deciding when the robot should change its grasp on the object as the human applies the forces. The planner also tries to choose subsequent grasps such that they will minimize the number of regrasps that will be required in the long-term. Furthermore, as it switches from one grasp to the other, the planner solves the problem of bimanual regrasp planning, where the object is not placed on a support surface, but instead it is held by a single gripper until the second gripper moves to a new position on the object. This requires the planner to also reason about the stability of the object under gravity. We provide an implementation on a bimanual robot and present experiments to show the performance of our planner.

Original languageEnglish
Title of host publication2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3503-3510
Number of pages8
ISBN (Electronic)9781538680940
DOIs
StatePublished - 27 Dec 2018
Externally publishedYes
Event2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018 - Madrid, Spain
Duration: 1 Oct 20185 Oct 2018

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
Country/TerritorySpain
CityMadrid
Period1/10/185/10/18

Fingerprint

Dive into the research topics of 'Manipulation Planning under Changing External Forces'. Together they form a unique fingerprint.

Cite this