TY - JOUR
T1 - Machine learning in knee arthroplasty
T2 - specific data are key—a systematic review
AU - Hinterwimmer, Florian
AU - Lazic, Igor
AU - Suren, Christian
AU - Hirschmann, Michael T.
AU - Pohlig, Florian
AU - Rueckert, Daniel
AU - Burgkart, Rainer
AU - von Eisenhart-Rothe, Rüdiger
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/2
Y1 - 2022/2
N2 - Purpose: Artificial intelligence (AI) in healthcare is rapidly growing and offers novel options of data analysis. Machine learning (ML) represents a distinct application of AI, which is capable of generating predictions and has already been tested in different medical specialties with various approaches such as diagnostic applications, cost predictions or identification of risk factors. In orthopaedics, this technology has only recently been introduced and the literature on ML in knee arthroplasty is scarce. In this review, we aim to investigate which predictions are already feasible using ML models in knee arthroplasty to identify prerequisites for the effective use of this novel approach. For this reason, we conducted a systematic review of ML algorithms for outcome prediction in knee arthroplasty. Methods: A comprehensive search of PubMed, Medline database and the Cochrane Library was conducted to find ML applications for knee arthroplasty. All relevant articles were systematically retrieved and evaluated by an orthopaedic surgeon and a data scientist on the basis of the PRISMA statement. The search strategy yielded 225 articles of which 19 were finally assessed as eligible. A modified Coleman Methodology Score (mCMS) was applied to account for a methodological evaluation. Results: The studies presented in this review demonstrated fair to good results (AUC median 0.76/range 0.57–0.98), while heterogeneous prediction models were analysed: complications (6), costs (4), functional outcome (3), revision (2), postoperative satisfaction (2), surgical technique (1) and biomechanical properties (1) were investigated. The median mCMS was 65 (range 40–80) points. Conclusion: The prediction of distinct outcomes with ML models applying specific data is already feasible; however, the prediction of more complex outcomes is still inaccurate. Registry data on knee arthroplasty have not been fully analysed yet so that specific parameters have not been sufficiently evaluated. The inclusion of specific input data as well as the collaboration of orthopaedic surgeons and data scientists are essential prerequisites to fully utilize the capacity of ML in knee arthroplasty. Future studies should investigate prospective data with specific and longitudinally recorded parameters. Level of evidence: III.
AB - Purpose: Artificial intelligence (AI) in healthcare is rapidly growing and offers novel options of data analysis. Machine learning (ML) represents a distinct application of AI, which is capable of generating predictions and has already been tested in different medical specialties with various approaches such as diagnostic applications, cost predictions or identification of risk factors. In orthopaedics, this technology has only recently been introduced and the literature on ML in knee arthroplasty is scarce. In this review, we aim to investigate which predictions are already feasible using ML models in knee arthroplasty to identify prerequisites for the effective use of this novel approach. For this reason, we conducted a systematic review of ML algorithms for outcome prediction in knee arthroplasty. Methods: A comprehensive search of PubMed, Medline database and the Cochrane Library was conducted to find ML applications for knee arthroplasty. All relevant articles were systematically retrieved and evaluated by an orthopaedic surgeon and a data scientist on the basis of the PRISMA statement. The search strategy yielded 225 articles of which 19 were finally assessed as eligible. A modified Coleman Methodology Score (mCMS) was applied to account for a methodological evaluation. Results: The studies presented in this review demonstrated fair to good results (AUC median 0.76/range 0.57–0.98), while heterogeneous prediction models were analysed: complications (6), costs (4), functional outcome (3), revision (2), postoperative satisfaction (2), surgical technique (1) and biomechanical properties (1) were investigated. The median mCMS was 65 (range 40–80) points. Conclusion: The prediction of distinct outcomes with ML models applying specific data is already feasible; however, the prediction of more complex outcomes is still inaccurate. Registry data on knee arthroplasty have not been fully analysed yet so that specific parameters have not been sufficiently evaluated. The inclusion of specific input data as well as the collaboration of orthopaedic surgeons and data scientists are essential prerequisites to fully utilize the capacity of ML in knee arthroplasty. Future studies should investigate prospective data with specific and longitudinally recorded parameters. Level of evidence: III.
KW - Artificial intelligence
KW - Knee arthroscopy
KW - Knee surgery
KW - Machine learning
KW - Supervised learning
KW - Total knee arthroplasty
UR - http://www.scopus.com/inward/record.url?scp=85122926865&partnerID=8YFLogxK
U2 - 10.1007/s00167-021-06848-6
DO - 10.1007/s00167-021-06848-6
M3 - Review article
C2 - 35006281
AN - SCOPUS:85122926865
SN - 0942-2056
VL - 30
SP - 376
EP - 388
JO - Knee Surgery, Sports Traumatology, Arthroscopy
JF - Knee Surgery, Sports Traumatology, Arthroscopy
IS - 2
ER -