Machine Learning Identifies New Predictors on Restenosis Risk after Coronary Artery Stenting in 10,004 Patients with Surveillance Angiography

Ulrich Güldener, Thorsten Kessler, Moritz von Scheidt, Johann S. Hawe, Beatrix Gerhard, Dieter Maier, Mark Lachmann, Karl Ludwig Laugwitz, Salvatore Cassese, Albert W. Schömig, Adnan Kastrati, Heribert Schunkert

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Fingerprint

Dive into the research topics of 'Machine Learning Identifies New Predictors on Restenosis Risk after Coronary Artery Stenting in 10,004 Patients with Surveillance Angiography'. Together they form a unique fingerprint.

Keyphrases

Medicine and Dentistry

Neuroscience