Machine Learning Identifies New Predictors on Restenosis Risk after Coronary Artery Stenting in 10,004 Patients with Surveillance Angiography
Ulrich Güldener, Thorsten Kessler, Moritz von Scheidt, Johann S. Hawe, Beatrix Gerhard, Dieter Maier, Mark Lachmann, Karl Ludwig Laugwitz, Salvatore Cassese, Albert W. Schömig, Adnan Kastrati, Heribert Schunkert
Research output: Contribution to journal › Article › peer-review
5Scopus
citations
Fingerprint
Dive into the research topics of 'Machine Learning Identifies New Predictors on Restenosis Risk after Coronary Artery Stenting in 10,004 Patients with Surveillance Angiography'. Together they form a unique fingerprint.