TY - JOUR
T1 - Machine-learning aided detector optimization of the Pacific Ocean Neutrino Experiment
AU - P-ONE Collaboration
AU - Haack, Christian
AU - Schumacher, Lisa
AU - Agostini, Matteo
AU - Bailly, Nicolai
AU - Baron, A. J.
AU - Bedard, Jeannette
AU - Bellenghi, Chiara
AU - Böhmer, Michael
AU - Bosma, Cassandra
AU - Brussow, Dirk
AU - Clark, Ken
AU - Crudele, Beatrice
AU - Danninger, Matthias
AU - De Leo, Fabio
AU - Deis, Nathan
AU - DeYoung, Tyce
AU - Dinkel, Martin
AU - Garriz, Jeanne
AU - Gärtner, Andreas
AU - Gernhäuser, Roman
AU - Ghuman, Dilraj
AU - Gousy-Leblanc, Vincent
AU - Grant, Darren
AU - Halliday, Robert
AU - Hatch, Patrick
AU - Henningsen, Felix
AU - Holzapfel, Kilian
AU - Jenkyns, Reyna
AU - Kerscher, Tobias
AU - Kerschtien, Shane
AU - Kopański, Konrad
AU - Kopper, Claudio
AU - Krauss, Carsten B.
AU - Kulin, Ian
AU - Kurahashi, Naoko
AU - Lai, Paul C.W.
AU - Lavallee, Tim
AU - Leismüller, Klaus
AU - Leys, Sally
AU - Li, Ruohan
AU - Malecki, Paweł
AU - McElroy, Thomas
AU - Maunder, Adam
AU - Michel, Jan
AU - Trejo, Santiago Miro
AU - Miller, Caleb
AU - Molberg, Nathan
AU - Moore, Roger
AU - Niederhausen, Hans
AU - Resconi, Elisa
N1 - Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons.
PY - 2024/9/27
Y1 - 2024/9/27
N2 - The Pacific Ocean Neutrino Experiment (P-ONE) is a planned cubic-kilometer-scale neutrino detector in the Pacific Ocean. P-ONE will measure high-energy astrophysical neutrinos to characterize the nature of astrophysical accelerators. Using existing deep-sea infrastructure provided by Ocean Networks Canada (ONC), P-ONE will instrument the ocean with optical modules - which host PMTs and readout electronics - deployed on several vertical cables of about 1 km in length. While the hardware design of the first prototype cable is currently being finalized, the detector geometry of the final instrument (up to 70 cables) is not yet fixed. Conventional design optimization typically requires extensive Monte-Carlo simulations, which limits the testable search space to a few configurations. In this contribution, we present the progress of optimizing the detector design using machine-learning-based surrogate models, which replace the computationally expensive MC simulations. By providing gradients, these models also allow for the efficient computation of detector resolutions via the Fisher Information Matrix, without having to rely on specific event-reconstruction algorithms.
AB - The Pacific Ocean Neutrino Experiment (P-ONE) is a planned cubic-kilometer-scale neutrino detector in the Pacific Ocean. P-ONE will measure high-energy astrophysical neutrinos to characterize the nature of astrophysical accelerators. Using existing deep-sea infrastructure provided by Ocean Networks Canada (ONC), P-ONE will instrument the ocean with optical modules - which host PMTs and readout electronics - deployed on several vertical cables of about 1 km in length. While the hardware design of the first prototype cable is currently being finalized, the detector geometry of the final instrument (up to 70 cables) is not yet fixed. Conventional design optimization typically requires extensive Monte-Carlo simulations, which limits the testable search space to a few configurations. In this contribution, we present the progress of optimizing the detector design using machine-learning-based surrogate models, which replace the computationally expensive MC simulations. By providing gradients, these models also allow for the efficient computation of detector resolutions via the Fisher Information Matrix, without having to rely on specific event-reconstruction algorithms.
UR - http://www.scopus.com/inward/record.url?scp=85212260295&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85212260295
SN - 1824-8039
VL - 444
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 1059
T2 - 38th International Cosmic Ray Conference, ICRC 2023
Y2 - 26 July 2023 through 3 August 2023
ER -