TY - JOUR
T1 - Machine learning a model for RNA structure prediction
AU - Calonaci, Nicola
AU - Jones, Alisha
AU - Cuturello, Francesca
AU - Sattler, Michael
AU - Bussi, Giovanni
N1 - Publisher Copyright:
© The Author(s) 2020. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - RNA function crucially depends on its structure. Thermodynamic models currently used for secondary structure prediction rely on computing the partition function of folding ensembles, and can thus estimate minimum free-energy structures and ensemble populations. These models sometimes fail in identifying native structures unless complemented by auxiliary experimental data. Here, we build a set of models that combine thermodynamic parameters, chemical probing data (DMS and SHAPE) and co-evolutionary data (direct coupling analysis) through a network that outputs perturbations to the ensemble free energy. Perturbations are trained to increase the ensemble populations of a representative set of known native RNA structures. In the chemical probing nodes of the network, a convolutional window combines neighboring reactivities, enlightening their structural information content and the contribution of local conformational ensembles. Regularization is used to limit overfitting and improve transferability. The most transferable model is selected through a cross-validation strategy that estimates the performance of models on systems on which they are not trained. With the selected model we obtain increased ensemble populations for native structures and more accurate predictions in an independent validation set. The flexibility of the approach allows the model to be easily retrained and adapted to incorporate arbitrary experimental information.
AB - RNA function crucially depends on its structure. Thermodynamic models currently used for secondary structure prediction rely on computing the partition function of folding ensembles, and can thus estimate minimum free-energy structures and ensemble populations. These models sometimes fail in identifying native structures unless complemented by auxiliary experimental data. Here, we build a set of models that combine thermodynamic parameters, chemical probing data (DMS and SHAPE) and co-evolutionary data (direct coupling analysis) through a network that outputs perturbations to the ensemble free energy. Perturbations are trained to increase the ensemble populations of a representative set of known native RNA structures. In the chemical probing nodes of the network, a convolutional window combines neighboring reactivities, enlightening their structural information content and the contribution of local conformational ensembles. Regularization is used to limit overfitting and improve transferability. The most transferable model is selected through a cross-validation strategy that estimates the performance of models on systems on which they are not trained. With the selected model we obtain increased ensemble populations for native structures and more accurate predictions in an independent validation set. The flexibility of the approach allows the model to be easily retrained and adapted to incorporate arbitrary experimental information.
UR - http://www.scopus.com/inward/record.url?scp=85113835548&partnerID=8YFLogxK
U2 - 10.1093/nargab/lqaa090
DO - 10.1093/nargab/lqaa090
M3 - Article
AN - SCOPUS:85113835548
SN - 2631-9268
VL - 2
JO - NAR Genomics and Bioinformatics
JF - NAR Genomics and Bioinformatics
IS - 4
M1 - lqaa090
ER -