Machine Covering in the Random-Order Model

Susanne Albers, Waldo Gálvez, Maximilian Janke

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In the Online Machine Covering problem jobs, defined by their sizes, arrive one by one and have to be assigned to m parallel and identical machines, with the goal of maximizing the load of the least-loaded machine. Unfortunately, the classical model allows only fairly pessimistic performance guarantees: The best possible deterministic ratio of m is achieved by the Greedy-strategy, and the best known randomized algorithm has competitive ratio Õ(√m) which cannot be improved by more than a logarithmic factor. Modern results try to mitigate this by studying semi-online models, where additional information about the job sequence is revealed in advance or extra resources are provided to the online algorithm. In this work we study the Machine Covering problem in the recently popular random-order model. Here no extra resources are present, but instead the adversary is weakened in that it can only decide upon the input set while jobs are revealed uniformly at random. It is particularly relevant to Machine Covering where lower bounds are usually associated to highly structured input sequences. We first analyze Graham’s Greedy-strategy in this context and establish that its competitive ratio decreases slightly to Θ (log(mm)) which is asymptotically tight. Then, as our main result, we present an improved Õ(√4 m)-competitive algorithm for the problem. This result is achieved by exploiting the extra information coming from the random order of the jobs, using sampling techniques to devise an improved mechanism to distinguish jobs that are relatively large from small ones. We complement this result with a first lower bound showing that no algorithm can have a competitive ratio of O (loglog(log(mm))) in the random-order model. This lower bound is achieved by studying a novel variant of the Secretary problem, which could be of independent interest.

Original languageEnglish
Title of host publication32nd International Symposium on Algorithms and Computation, ISAAC 2021
EditorsHee-Kap Ahn, Kunihiko Sadakane
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772143
DOIs
StatePublished - 1 Dec 2021
Event32nd International Symposium on Algorithms and Computation, ISAAC 2021 - Fukuoka, Japan
Duration: 6 Dec 20218 Dec 2021

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume212
ISSN (Print)1868-8969

Conference

Conference32nd International Symposium on Algorithms and Computation, ISAAC 2021
Country/TerritoryJapan
CityFukuoka
Period6/12/218/12/21

Keywords

  • Competitive analysis
  • Machine covering
  • Online algorithm
  • Random-order
  • Scheduling

Fingerprint

Dive into the research topics of 'Machine Covering in the Random-Order Model'. Together they form a unique fingerprint.

Cite this