TY - JOUR
T1 - Low-emissions and profitable cocoa through moderate-shade agroforestry
T2 - Insights from Ghana
AU - Hawkins, James W.
AU - Gallagher, Emily J.
AU - van der Haar, Selma
AU - Sevor, Mawuli K.E.
AU - Weng, Xiaoxue
AU - Rufino, Mariana C.
AU - Schoneveld, George C.
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/6/15
Y1 - 2024/6/15
N2 - Cocoa production is a leading driver of deforestation in the humid-tropics of West Africa. Reconciling climate change mitigation with livelihoods of farmers requires identification of production strategies to concurrently improve yield and profit while curtailing emissions of greenhouse gases (GHG). Using a 2021 plot-survey conducted in Ghana's Eastern region, we evaluated yields, GHG emissions, and value of production (VOP) (a profit indicator) across a typology representing the diversity of systems at plot-level. The typology was constructed by first stratifying plots according to shade levels and variety (hybrid vs. Amazonia) which resulted in three systems: Hybrid sun, hybrid variety under full-sun (little to no shade); Hybrid shade, hybrid and moderate shade (13–25 shade trees ha−1); and Amazonia, Amazonia under predominantly moderate shade. Next, factor analysis and clustering were used to group plots within each system according to cocoa yield, vegetation, management, and (local) climate conditions. Cluster analysis showed that fertiliser, weeding, pruning, hand pollination, cocoa tree density, and shade tree densities of differing heights were most influential for determination across systems. Hybrid shade had the highest net GHG removal rate at −6.8 ± 1.7 (± 95% CI) Mg CO2eq ha−1 yr−1: 48% and 127% higher (emissions more negative) respectively over Amazonia and Hybrid sun. Hybrid shade additionally had the highest average and least variable VOP among production systems at 669 ± 564 USD ha−1 yr−1, compared to Hybrid sun and Amazonia at 404 ± 442 and 213 ± 280 USD ha−1 yr−1 respectively. These results point to hybrid cocoa grown under moderate shade of 13–25 shade trees ha−1 as optimal for reconciling climate change mitigation with development in West African cocoa.
AB - Cocoa production is a leading driver of deforestation in the humid-tropics of West Africa. Reconciling climate change mitigation with livelihoods of farmers requires identification of production strategies to concurrently improve yield and profit while curtailing emissions of greenhouse gases (GHG). Using a 2021 plot-survey conducted in Ghana's Eastern region, we evaluated yields, GHG emissions, and value of production (VOP) (a profit indicator) across a typology representing the diversity of systems at plot-level. The typology was constructed by first stratifying plots according to shade levels and variety (hybrid vs. Amazonia) which resulted in three systems: Hybrid sun, hybrid variety under full-sun (little to no shade); Hybrid shade, hybrid and moderate shade (13–25 shade trees ha−1); and Amazonia, Amazonia under predominantly moderate shade. Next, factor analysis and clustering were used to group plots within each system according to cocoa yield, vegetation, management, and (local) climate conditions. Cluster analysis showed that fertiliser, weeding, pruning, hand pollination, cocoa tree density, and shade tree densities of differing heights were most influential for determination across systems. Hybrid shade had the highest net GHG removal rate at −6.8 ± 1.7 (± 95% CI) Mg CO2eq ha−1 yr−1: 48% and 127% higher (emissions more negative) respectively over Amazonia and Hybrid sun. Hybrid shade additionally had the highest average and least variable VOP among production systems at 669 ± 564 USD ha−1 yr−1, compared to Hybrid sun and Amazonia at 404 ± 442 and 213 ± 280 USD ha−1 yr−1 respectively. These results point to hybrid cocoa grown under moderate shade of 13–25 shade trees ha−1 as optimal for reconciling climate change mitigation with development in West African cocoa.
KW - Allometric modelling
KW - Carbon sequestration
KW - Climate change mitigation
KW - Cocoa
KW - Greenhouse gas emissions
KW - Perennial agroforestry
KW - Shade trees
UR - http://www.scopus.com/inward/record.url?scp=85189017076&partnerID=8YFLogxK
U2 - 10.1016/j.agee.2024.108961
DO - 10.1016/j.agee.2024.108961
M3 - Article
AN - SCOPUS:85189017076
SN - 0167-8809
VL - 367
JO - Agriculture, Ecosystems and Environment
JF - Agriculture, Ecosystems and Environment
M1 - 108961
ER -