TY - JOUR
T1 - Low-cost and highly sensitive immunosensing platform for aflatoxins using one-step competitive displacement reaction mode and portable glucometer-based detection
AU - Tang, Dianping
AU - Lin, Youxiu
AU - Zhou, Qian
AU - Lin, Yuping
AU - Li, Peiwu
AU - Niessner, Reinhard
AU - Knopp, Dietmar
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2014/11/18
Y1 - 2014/11/18
N2 - Aflatoxins are highly toxic secondary metabolites produced by a number of different fungi and present in a wide range of food and feed commodities. Herein, we designed a simple and low-cost immunosensing platform for highly sensitive detection of mycotoxins (aflatoxin B1, AFB1, used as a model) on polyethylenimine (PEI)-coated mesoporous silica nanocontainers (PEI-MSN). The assay was carried out by using a portable personal glucometer (PGM) as the readout based on a competitive displacement reaction mode between target AFB1 and its pseudo-hapten (PEI-MSN) for monoclonal anti-AFB1 antibody (mAb). To construct such an assay protocol, two nanostructures including mAb-labeled gold nanoparticle (mAb-AuNP) and PEI-MSN were initially synthesized, and then numerous glucose molecules were gated into the pores based on the interaction between negatively charged mAb-AuNP and positively charged PEI-MSN. In the presence of target AFB1, a competitive-type displacement reaction was implemented between mAb-AuNP and PEI-MSN by target AFB1 through the specific antigen-antibody reaction. Accompanying the reaction, target AFB1 could displace the mAb-AuNP from the surface of PEI-MSN, resulting in the release of the loading glucose from the pores due to the gate opened. The released glucose molecules could be quantitatively determined by using a portable PGM. Under optimal conditions, the PGM signal increased with the increment of AFB1 concentration in the range from 0.01 to 15 μg/kg (ppb) with a detection limit (LOD) of 5 ng/kg (5 ppt) at the 3sblank criterion. The selectivity and precision were acceptable. Importantly, the methodology was further validated for assaying naturally contaminated or spiked blank peanut samples, and consistent results between the PGM-based immunoassay and the referenced enzyme-linked immunosorbent assay (ELISA) were obtained. Therefore, the developed immunoassay provides a promising approach for rapid screening of organic pollutants because it is simple, low-cost, sensitive, specific, and without the need of multiple separation and washing steps.
AB - Aflatoxins are highly toxic secondary metabolites produced by a number of different fungi and present in a wide range of food and feed commodities. Herein, we designed a simple and low-cost immunosensing platform for highly sensitive detection of mycotoxins (aflatoxin B1, AFB1, used as a model) on polyethylenimine (PEI)-coated mesoporous silica nanocontainers (PEI-MSN). The assay was carried out by using a portable personal glucometer (PGM) as the readout based on a competitive displacement reaction mode between target AFB1 and its pseudo-hapten (PEI-MSN) for monoclonal anti-AFB1 antibody (mAb). To construct such an assay protocol, two nanostructures including mAb-labeled gold nanoparticle (mAb-AuNP) and PEI-MSN were initially synthesized, and then numerous glucose molecules were gated into the pores based on the interaction between negatively charged mAb-AuNP and positively charged PEI-MSN. In the presence of target AFB1, a competitive-type displacement reaction was implemented between mAb-AuNP and PEI-MSN by target AFB1 through the specific antigen-antibody reaction. Accompanying the reaction, target AFB1 could displace the mAb-AuNP from the surface of PEI-MSN, resulting in the release of the loading glucose from the pores due to the gate opened. The released glucose molecules could be quantitatively determined by using a portable PGM. Under optimal conditions, the PGM signal increased with the increment of AFB1 concentration in the range from 0.01 to 15 μg/kg (ppb) with a detection limit (LOD) of 5 ng/kg (5 ppt) at the 3sblank criterion. The selectivity and precision were acceptable. Importantly, the methodology was further validated for assaying naturally contaminated or spiked blank peanut samples, and consistent results between the PGM-based immunoassay and the referenced enzyme-linked immunosorbent assay (ELISA) were obtained. Therefore, the developed immunoassay provides a promising approach for rapid screening of organic pollutants because it is simple, low-cost, sensitive, specific, and without the need of multiple separation and washing steps.
UR - http://www.scopus.com/inward/record.url?scp=84920273985&partnerID=8YFLogxK
U2 - 10.1021/ac503616d
DO - 10.1021/ac503616d
M3 - Article
C2 - 25329775
AN - SCOPUS:84920273985
SN - 0003-2700
VL - 86
SP - 11451
EP - 11458
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 22
ER -