Abstract
We report a long-wavelength helimagnetic superstructure in bulk samples of the ferrimagnetic insulator Cu 2OSeO 3. The magnetic phase diagram associated with the helimagnetic modulation inferred from small-angle neutron scattering and magnetization measurements includes a skyrmion lattice phase and is strongly reminiscent of MnSi, FeGe, and Fe 1-xCo xSi, i.e., binary isostructural siblings of Cu 2OSeO 3 that order helimagnetically. The temperature dependence of the specific heat of Cu 2OSeO 3 is characteristic of nearly critical spin fluctuations at the helimagnetic transition. This provides putative evidence for effective spin currents as the origin of enhancements of the magnetodielectric response instead of atomic displacements considered so far.
Original language | English |
---|---|
Article number | 237204 |
Journal | Physical Review Letters |
Volume | 108 |
Issue number | 23 |
DOIs | |
State | Published - 8 Jun 2012 |