TY - JOUR
T1 - Long-term trends of phosphorus nutrition and topsoil phosphorus stocks in unfertilized and fertilized Scots pine (Pinus sylvestris) stands at two sites in Southern Germany
AU - Prietzel, Jörg
AU - Stetter, Ulrich
N1 - Funding Information:
We gratefully acknowledge the assistance of I. Dully during soil sampling, of J. Skrebsky and H. Herzig during sampling of pine foliage. We also want to thank G. Harrington and U. Maul for skilful and dedicated analysis of different P forms in soil. Parts of this study were funded by the Bavarian State Ministry of Agriculture and Forestry (research grant ST 154 ).
PY - 2010/3/1
Y1 - 2010/3/1
N2 - For two Scots pine (Pinus sylvestris) ecosystems in S Germany with different atmospheric N deposition (Pfaffenwinkel, intermediate N deposition; Pustert, large N deposition), the supply with phosphorus (P) has been monitored for unfertilized and fertilized plots over more than four decades by foliar analysis (1964-2007). Additionally, topsoil concentrations and stocks of total P and plant-available P (citric-acid-extractable phosphate) were quantified in 10-year intervals (1982/1984, 1994, 2004). At both sites, fertilization experiments, including the variants control, NPKMgCa + lime, PKMgCa + lime + introduction of lupine, corresponding to an addition of 75 and 90 kg ha-1 P in Pustert and Pfaffenwinkel, respectively had been established in 1964. Our study revealed different trends of the P nutritional status for the pines at the two sites during the recent four decades: At Pustert, elevated atmospheric N deposition together with small topsoil P pools resulted in significant deterioration of Scots pine P nutrition and in an increasingly unbalanced N/P nutrition. At Pfaffenwinkel a trend of improved P nutrition from 1964 to 1991 was replaced by an opposite trend in the most recent 15 years. For our study sites, which are characterized by acidic soils with thick O layers, the forest floor stock of citric-acid-extractable phosphate showed a strong and significant correlation with the P concentration in current-year pine foliage, and thus was an appropriate variable to predict the P nutritional status of the stands. Total P stocks as well as the concentrations of total P in the forest floor or in the mineral topsoil were poorly correlated with pine foliar P concentrations and thus inappropriate predictors of P nutrition. P fertilization in the 1960s sustainably improved the P nutritional status of the stands. At Pfaffenwinkel, foliar P concentrations and topsoil stocks of citric-acid-extractable phosphate were increased at the fertilized plots relative to the control plots even 40 years after fertilization; at Pustert, foliar P concentrations were increased for about 20 years.
AB - For two Scots pine (Pinus sylvestris) ecosystems in S Germany with different atmospheric N deposition (Pfaffenwinkel, intermediate N deposition; Pustert, large N deposition), the supply with phosphorus (P) has been monitored for unfertilized and fertilized plots over more than four decades by foliar analysis (1964-2007). Additionally, topsoil concentrations and stocks of total P and plant-available P (citric-acid-extractable phosphate) were quantified in 10-year intervals (1982/1984, 1994, 2004). At both sites, fertilization experiments, including the variants control, NPKMgCa + lime, PKMgCa + lime + introduction of lupine, corresponding to an addition of 75 and 90 kg ha-1 P in Pustert and Pfaffenwinkel, respectively had been established in 1964. Our study revealed different trends of the P nutritional status for the pines at the two sites during the recent four decades: At Pustert, elevated atmospheric N deposition together with small topsoil P pools resulted in significant deterioration of Scots pine P nutrition and in an increasingly unbalanced N/P nutrition. At Pfaffenwinkel a trend of improved P nutrition from 1964 to 1991 was replaced by an opposite trend in the most recent 15 years. For our study sites, which are characterized by acidic soils with thick O layers, the forest floor stock of citric-acid-extractable phosphate showed a strong and significant correlation with the P concentration in current-year pine foliage, and thus was an appropriate variable to predict the P nutritional status of the stands. Total P stocks as well as the concentrations of total P in the forest floor or in the mineral topsoil were poorly correlated with pine foliar P concentrations and thus inappropriate predictors of P nutrition. P fertilization in the 1960s sustainably improved the P nutritional status of the stands. At Pfaffenwinkel, foliar P concentrations and topsoil stocks of citric-acid-extractable phosphate were increased at the fertilized plots relative to the control plots even 40 years after fertilization; at Pustert, foliar P concentrations were increased for about 20 years.
KW - Citric-acid-extractable phosphate
KW - Foliar analysis
KW - Long-term monitoring
KW - N deposition
KW - P availability
KW - Soil phosphorus
UR - http://www.scopus.com/inward/record.url?scp=75349083400&partnerID=8YFLogxK
U2 - 10.1016/j.foreco.2009.12.030
DO - 10.1016/j.foreco.2009.12.030
M3 - Article
AN - SCOPUS:75349083400
SN - 0378-1127
VL - 259
SP - 1141
EP - 1150
JO - Forest Ecology and Management
JF - Forest Ecology and Management
IS - 6
ER -