TY - JOUR
T1 - Long-term ferrocyanide application via deicing salts promotes the establishment of Actinomycetales assimilating ferrocyanide-derived carbon in soil
AU - Gschwendtner, Silvia
AU - Mansfeldt, Tim
AU - Kublik, Susanne
AU - Touliari, Evangelia
AU - Buegger, Franz
AU - Schloter, Michael
N1 - Publisher Copyright:
© 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
PY - 2016/7/1
Y1 - 2016/7/1
N2 - Cyanides are highly toxic and produced by various microorganisms as defence strategy or to increase their competitiveness. As degradation is the most efficient way of detoxification, some microbes developed the capability to use cyanides as carbon and nitrogen source. However, it is not clear if this potential also helps to lower cyanide concentrations in roadside soils where deicing salt application leads to significant inputs of ferrocyanide. The question remains if biodegradation in soils can occur without previous photolysis. By conducting a microcosm experiment using soils with/without pre-exposition to road salts spiked with 13C-labelled ferrocyanide, we were able to confirm biodegradation and in parallel to identify bacteria using ferrocyanide as C source via DNA stable isotope probing (DNA-SIP), TRFLP fingerprinting and pyrosequencing. Bacteria assimilating 13C were highly similar in the pre-exposed soils, belonging mostly to Actinomycetales (Kineosporia, Mycobacterium, Micromonosporaceae). In the soil without pre-exposition, bacteria belonging to Acidobacteria (Gp3, Gp4, Gp6), Gemmatimonadetes (Gemmatimonas) and Gammaproteobacteria (Thermomonas, Xanthomonadaceae) used ferrocyanide as C source but not the present Actinomycetales. This indicated that (i) various bacteria are able to assimilate ferrocyanide-derived C and (ii) long-term exposition to ferrocyanide applied with deicing salts leads to Actinomycetales outcompeting other microorganisms for the use of ferrocyanide as C source.
AB - Cyanides are highly toxic and produced by various microorganisms as defence strategy or to increase their competitiveness. As degradation is the most efficient way of detoxification, some microbes developed the capability to use cyanides as carbon and nitrogen source. However, it is not clear if this potential also helps to lower cyanide concentrations in roadside soils where deicing salt application leads to significant inputs of ferrocyanide. The question remains if biodegradation in soils can occur without previous photolysis. By conducting a microcosm experiment using soils with/without pre-exposition to road salts spiked with 13C-labelled ferrocyanide, we were able to confirm biodegradation and in parallel to identify bacteria using ferrocyanide as C source via DNA stable isotope probing (DNA-SIP), TRFLP fingerprinting and pyrosequencing. Bacteria assimilating 13C were highly similar in the pre-exposed soils, belonging mostly to Actinomycetales (Kineosporia, Mycobacterium, Micromonosporaceae). In the soil without pre-exposition, bacteria belonging to Acidobacteria (Gp3, Gp4, Gp6), Gemmatimonadetes (Gemmatimonas) and Gammaproteobacteria (Thermomonas, Xanthomonadaceae) used ferrocyanide as C source but not the present Actinomycetales. This indicated that (i) various bacteria are able to assimilate ferrocyanide-derived C and (ii) long-term exposition to ferrocyanide applied with deicing salts leads to Actinomycetales outcompeting other microorganisms for the use of ferrocyanide as C source.
UR - http://www.scopus.com/inward/record.url?scp=84976585098&partnerID=8YFLogxK
U2 - 10.1111/1751-7915.12362
DO - 10.1111/1751-7915.12362
M3 - Article
C2 - 27194597
AN - SCOPUS:84976585098
SN - 1751-7907
VL - 9
SP - 502
EP - 513
JO - Microbial Biotechnology
JF - Microbial Biotechnology
IS - 4
ER -