TY - JOUR
T1 - LONG-SHORT SKIP CONNECTIONS in DEEP NEURAL NETWORKS for DSM REFINEMENT
AU - Bittner, K.
AU - Liebel, L.
AU - Körner, M.
AU - Reinartz, P.
N1 - Publisher Copyright:
© 2020 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives.
PY - 2020/8/6
Y1 - 2020/8/6
N2 - Detailed digital surface models (DSMs) from space-borne sensors are the key to successful solutions for many remote sensing problems, like environmental disaster simulations, change detection in rural and urban areas, 3D urban modeling for city planning and management, etc. Traditional methodologies, e.g., stereo matching, used to generate photogrammetric DSMs from stereo imagery, usually deliver low-quality results due to the matching errors in homogeneous areas or the lack of information when observing the scene under different viewing angles. This makes the tasks related to building reconstruction very challenging since in most cases it is difficult to recognize the type of roofs, especially if overlaid with trees. This work represents a continuation of research regarding the automatic optimization of building geometries in photogrammetric DSMs with half-meter resolution and introduces an improved generative adversarial network (GAN) architecture which allows to reconstruct complete and detailed building structures without neglecting even low-rise urban constructions. The generative part of the network is constructed in a way that it simultaneously processes height and intensity information, and combines short and long skip connections within one architecture. To improve different aspects of the surface, several loss terms are used, the contributions of which are automatically balanced during training. The obtained results demonstrate that the proposed methodology can achieve two goals without any manual intervention: improve the roof surfaces by making them more planar and also recognize and optimize even small residential buildings which are hard to detect.
AB - Detailed digital surface models (DSMs) from space-borne sensors are the key to successful solutions for many remote sensing problems, like environmental disaster simulations, change detection in rural and urban areas, 3D urban modeling for city planning and management, etc. Traditional methodologies, e.g., stereo matching, used to generate photogrammetric DSMs from stereo imagery, usually deliver low-quality results due to the matching errors in homogeneous areas or the lack of information when observing the scene under different viewing angles. This makes the tasks related to building reconstruction very challenging since in most cases it is difficult to recognize the type of roofs, especially if overlaid with trees. This work represents a continuation of research regarding the automatic optimization of building geometries in photogrammetric DSMs with half-meter resolution and introduces an improved generative adversarial network (GAN) architecture which allows to reconstruct complete and detailed building structures without neglecting even low-rise urban constructions. The generative part of the network is constructed in a way that it simultaneously processes height and intensity information, and combines short and long skip connections within one architecture. To improve different aspects of the surface, several loss terms are used, the contributions of which are automatically balanced during training. The obtained results demonstrate that the proposed methodology can achieve two goals without any manual intervention: improve the roof surfaces by making them more planar and also recognize and optimize even small residential buildings which are hard to detect.
KW - 3D scene refinement
KW - Conditional generative adversarial networks (cGANs)
KW - balancing hyper-parameters
KW - building geometry
KW - long-short skip connections
UR - http://www.scopus.com/inward/record.url?scp=85091111762&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLIII-B2-2020-383-2020
DO - 10.5194/isprs-archives-XLIII-B2-2020-383-2020
M3 - Conference article
AN - SCOPUS:85091111762
SN - 1682-1750
VL - 43
SP - 383
EP - 390
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
IS - B2
T2 - 2020 24th ISPRS Congress - Technical Commission II
Y2 - 31 August 2020 through 2 September 2020
ER -