TY - GEN
T1 - Long distance prediction and short distance control in human-robot systems
AU - Palm, Rainer
AU - Lilienthal, Achim J.
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/8/23
Y1 - 2017/8/23
N2 - The study of the interaction between autonomous robots and human agents in common working areas is an emerging field of research. Main points thereby are human safety, system stability, performance and optimality of the whole interaction process. Two approaches to deal with human-robot interaction can be distinguished: Long distance prediction which requires the recognition of intentions of other agents, and short distance control which deals with actions and reactions between agents and mutual reactive control of their motions and behaviors. In this context obstacle avoidance plays a prominent role. In this paper long distance prediction is represented by the identification of human intentions to use specific lanes by using fuzzy time clustering of pedestrian tracks. Another issue is the extrapolation of parts of both human and robot trajectories in the presence of scattered/uncertain measurements to guarantee a collision-free robot motion. Short distance control is represented by obstacle avoidance between agents using the method of velocity obstacles and both analytical and fuzzy control methods.
AB - The study of the interaction between autonomous robots and human agents in common working areas is an emerging field of research. Main points thereby are human safety, system stability, performance and optimality of the whole interaction process. Two approaches to deal with human-robot interaction can be distinguished: Long distance prediction which requires the recognition of intentions of other agents, and short distance control which deals with actions and reactions between agents and mutual reactive control of their motions and behaviors. In this context obstacle avoidance plays a prominent role. In this paper long distance prediction is represented by the identification of human intentions to use specific lanes by using fuzzy time clustering of pedestrian tracks. Another issue is the extrapolation of parts of both human and robot trajectories in the presence of scattered/uncertain measurements to guarantee a collision-free robot motion. Short distance control is represented by obstacle avoidance between agents using the method of velocity obstacles and both analytical and fuzzy control methods.
UR - http://www.scopus.com/inward/record.url?scp=85030175947&partnerID=8YFLogxK
U2 - 10.1109/FUZZ-IEEE.2017.8015396
DO - 10.1109/FUZZ-IEEE.2017.8015396
M3 - Conference contribution
AN - SCOPUS:85030175947
T3 - IEEE International Conference on Fuzzy Systems
BT - 2017 IEEE International Conference on Fuzzy Systems, FUZZ 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE International Conference on Fuzzy Systems, FUZZ 2017
Y2 - 9 July 2017 through 12 July 2017
ER -