TY - JOUR
T1 - London dispersion driven compaction of coordination cages in the gas-phase - a combined ion mobility and theoretical study
AU - Drechsler, Christoph
AU - Baksi, Ananya
AU - Platzek, André
AU - Acar, Mert
AU - Holstein, Julian J.
AU - Stein, Christopher J.
AU - Clever, Guido H.
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024
Y1 - 2024
N2 - Large self-assembled systems (such as metallosupramolecular rings and cages) can be difficult to structurally characterize, in particular when they show a highly dynamic behavior. In the gas-phase, Ion Mobility Spectrometry (IMS), in tandem with Electrospray Ionization Mass Spectrometry (ESI MS), can yield valuable insights into the size, shape and dynamics of such supramolecular assemblies. However, the detailed relationship between experimental IMS data and the actual gas-phase structure is still poorly understood for soft and flexible self-assemblies. In this study, we combine high resolution Trapped Ion Mobility Spectrometry (TIMS), yielding collisional cross section data (CCS), with computational modeling and theoretical CCS calculations to obtain and interpret gas-phase structural data for a series of palladium-based coordination cages. We focus on derivatives of a homoleptic lantern-shaped [Pd2L4]4+ cage and its interpenetrated dimer ([3X@Pd4L8]5+, X = Cl, Br) to study the influence of flexible side chains of different lengths, counter anions and π-stacking tendencies between the ligands in the absence of solvent. The gained insights as well as the presented CCS calculation and evaluation workflow establish a basis for the systematic gas-phase characterization of a wider range of flexible, chain-decorated and guest-modulated assemblies.
AB - Large self-assembled systems (such as metallosupramolecular rings and cages) can be difficult to structurally characterize, in particular when they show a highly dynamic behavior. In the gas-phase, Ion Mobility Spectrometry (IMS), in tandem with Electrospray Ionization Mass Spectrometry (ESI MS), can yield valuable insights into the size, shape and dynamics of such supramolecular assemblies. However, the detailed relationship between experimental IMS data and the actual gas-phase structure is still poorly understood for soft and flexible self-assemblies. In this study, we combine high resolution Trapped Ion Mobility Spectrometry (TIMS), yielding collisional cross section data (CCS), with computational modeling and theoretical CCS calculations to obtain and interpret gas-phase structural data for a series of palladium-based coordination cages. We focus on derivatives of a homoleptic lantern-shaped [Pd2L4]4+ cage and its interpenetrated dimer ([3X@Pd4L8]5+, X = Cl, Br) to study the influence of flexible side chains of different lengths, counter anions and π-stacking tendencies between the ligands in the absence of solvent. The gained insights as well as the presented CCS calculation and evaluation workflow establish a basis for the systematic gas-phase characterization of a wider range of flexible, chain-decorated and guest-modulated assemblies.
UR - http://www.scopus.com/inward/record.url?scp=85207383920&partnerID=8YFLogxK
U2 - 10.1039/d4sc04786a
DO - 10.1039/d4sc04786a
M3 - Article
AN - SCOPUS:85207383920
SN - 2041-6520
JO - Chemical Science
JF - Chemical Science
ER -