TY - GEN
T1 - Linear algebra operators for GPU implementation of numerical algorithms
AU - Krüger, Jens
AU - Westermann, Rüdiger
PY - 2003
Y1 - 2003
N2 - In this work, the emphasis is on the development of strategies to realize techniques of numerical computing on the graphics chip. In particular, the focus is on the acceleration of techniques for solving sets of algebraic equations as they occur in numerical simulation. We introduce a framework for the implementation of linear algebra operators on programmable graphics processors (GPUs), thus providing the building blocks for the design of more complex numerical algorithms. In particular, we propose a stream model for arithmetic operations on vectors and matrices that exploits the intrinsic parallelism and efficient communication on modern GPUs. Besides performance gains due to improved numerical computations, graphics algorithms benefit from this model in that the transfer of computation results to the graphics processor for display is avoided. We demonstrate the effectiveness of our approach by implementing direct solvers for sparse matrices, and by applying these solvers to multi-dimensional finite difference equations, i.e. the 2D wave equation and the incompressible Navier-Stokes equations.
AB - In this work, the emphasis is on the development of strategies to realize techniques of numerical computing on the graphics chip. In particular, the focus is on the acceleration of techniques for solving sets of algebraic equations as they occur in numerical simulation. We introduce a framework for the implementation of linear algebra operators on programmable graphics processors (GPUs), thus providing the building blocks for the design of more complex numerical algorithms. In particular, we propose a stream model for arithmetic operations on vectors and matrices that exploits the intrinsic parallelism and efficient communication on modern GPUs. Besides performance gains due to improved numerical computations, graphics algorithms benefit from this model in that the transfer of computation results to the graphics processor for display is avoided. We demonstrate the effectiveness of our approach by implementing direct solvers for sparse matrices, and by applying these solvers to multi-dimensional finite difference equations, i.e. the 2D wave equation and the incompressible Navier-Stokes equations.
KW - graphics hardware
KW - numerical simulation
UR - http://www.scopus.com/inward/record.url?scp=77954024744&partnerID=8YFLogxK
U2 - 10.1145/1201775.882363
DO - 10.1145/1201775.882363
M3 - Conference contribution
AN - SCOPUS:77954024744
SN - 1581137095
SN - 9781581137095
T3 - ACM SIGGRAPH 2003 Papers, SIGGRAPH '03
SP - 908
EP - 916
BT - ACM SIGGRAPH 2003 Papers, SIGGRAPH '03
T2 - ACM SIGGRAPH 2003 Papers, SIGGRAPH '03
Y2 - 27 July 2003 through 31 July 2003
ER -