Limits, approximation and size transferability for GNNs on sparse graphs via graphops

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

Can graph neural networks generalize to graphs that are different from the graphs they were trained on, e.g., in size? In this work, we study this question from a theoretical perspective. While recent work established such transferability and approximation results via graph limits, e.g., via graphons, these only apply nontrivially to dense graphs. To include frequently encountered sparse graphs such as bounded-degree or power law graphs, we take a perspective of taking limits of operators derived from graphs, such as the aggregation operation that makes up GNNs. This leads to the recently introduced limit notion of graphops (Backhausz and Szegedy, 2022). We demonstrate how the operator perspective allows us to develop quantitative bounds on the distance between a finite GNN and its limit on an infinite graph, as well as the distance between the GNN on graphs of different sizes that share structural properties, under a regularity assumption verified for various graph sequences. Our results hold for dense and sparse graphs, and various notions of graph limits.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: 10 Dec 202316 Dec 2023

Fingerprint

Dive into the research topics of 'Limits, approximation and size transferability for GNNs on sparse graphs via graphops'. Together they form a unique fingerprint.

Cite this