Abstract
Bend-twist coupling behavior is induced in a blade by displacing the suction side spar cap towards the leading edge, and the pressure side one in the opposite direction. Additional couplings are introduced by rotating the spar cap fibers. The structural configuration of the blade is optimized using an automated design environment. The resulting blade shows significant benefits in terms of mass and loads when compared to the baseline uncoupled one. Finally, the lightweight design concept is used to increase the rotor size, resulting in a larger energy yield for the same hub loads.
Original language | English |
---|---|
Article number | 062003 |
Journal | Journal of Physics: Conference Series |
Volume | 753 |
Issue number | 6 |
DOIs | |
State | Published - 3 Oct 2016 |
Event | Science of Making Torque from Wind, TORQUE 2016 - Munich, Germany Duration: 5 Oct 2016 → 7 Oct 2016 |