Leveraging abscisic acid receptors for efficient water use in Arabidopsis

Zhenyu Yang, Jinghui Liu, Stefanie V. Tischer, Alexander Christmann, Wilhelm Windisch, Hans Schnyder, Erwin Grill

Research output: Contribution to journalArticlepeer-review

104 Scopus citations

Abstract

Plant growth requires the influx of atmospheric CO2 through stomatal pores, and this carbon uptake for photosynthesis is inherently associated with a large efflux of water vapor. Under water deficit, plants reduce transpiration and are able to improve carbon for water exchange leading to higher water use efficiency (WUE). Whether increased WUE can be achieved without trade-offs in plant growth is debated. The signals mediating the WUE response under water deficit are not fully elucidated but involve the phytohormone abscisic acid (ABA). ABA is perceived by a family of related receptors known to mediate acclimation responses and to reduce transpiration. We now show that enhanced stimulation of ABA signaling via distinct ABA receptors can result in plants constitutively growing at high WUE in the model species Arabidopsis. WUE was assessed by three independent approaches involving gravimetric analyses, 13C discrimination studies of shoots and derived cellulose fractions, and by gas exchange measurements of whole plants and individual leaves. Plants expressing the ABA receptors RCAR6/PYL12 combined up to 40% increased WUE with high growth rates, i.e., are water productive. Water productivity was associated with maintenance of net carbon assimilation by compensatory increases of leaf CO2 gradients, thereby sustaining biomass acquisition. Leaf surface temperatures and growth potentials of plants growing under well-watered conditions were found to be reliable indicators for water productivity. The study shows that ABA receptors can be explored to generate more plant biomass per water transpired, which is a prime goal for a more sustainable water use in agriculture.

Original languageEnglish
Pages (from-to)6791-6796
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume113
Issue number24
DOIs
StatePublished - 14 Jun 2016

Keywords

  • Carbon assimilation
  • Drought resistance
  • Water deficit
  • Water productivity
  • Water use efficiency

Fingerprint

Dive into the research topics of 'Leveraging abscisic acid receptors for efficient water use in Arabidopsis'. Together they form a unique fingerprint.

Cite this