Abstract
The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterization. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is identifying the effects of spots visually and correcting them manually or discarding the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The primary focus of the paper is to present in detail a diverse arsenal of methods for doing so. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency’s upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top five winning teams, provide their code, and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal pre-processing – deep neural networks and ensemble methods – or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.
Original language | English |
---|---|
Pages (from-to) | 695-709 |
Number of pages | 15 |
Journal | RAS Techniques and Instruments |
Volume | 2 |
Issue number | 1 |
DOIs | |
State | Published - 1 Jan 2023 |
Externally published | Yes |
Keywords
- Data Methods
- Exoplanets
- Light Curves
- Machine Learning
- Stellar Spots
- Transit Photometry