TY - GEN
T1 - Learning vector autoregressive models with latent processes
AU - Salehkaleybar, Saber
AU - Etesami, Jalal
AU - Kiyavash, Negar
AU - Zhang, Kun
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - We study the problem of learning the support of transition matrix between random processes in a Vector Autoregressive (VAR) model from samples when a subset of the processes are latent. It is well known that ignoring the effect of the latent processes may lead to very different estimates of the influences among observed processes, and we are concerned with identifying the influences among the observed processes, those between the latent ones, and those from the latent to the observed ones. We show that the support of transition matrix among the observed processes and lengths of all latent paths between any two observed processes can be identified successfully under some conditions on the VAR model. From the lengths of latent paths, we reconstruct the latent subgraph (representing the influences among the latent processes) with a minimum number of variables uniquely if its topology is a directed tree. Furthermore, we propose an algorithm that finds all possible minimal latent graphs under some conditions on the lengths of latent paths. Our results apply to both non-Gaussian and Gaussian cases, and experimental results on various synthetic and real-world datasets validate our theoretical results.
AB - We study the problem of learning the support of transition matrix between random processes in a Vector Autoregressive (VAR) model from samples when a subset of the processes are latent. It is well known that ignoring the effect of the latent processes may lead to very different estimates of the influences among observed processes, and we are concerned with identifying the influences among the observed processes, those between the latent ones, and those from the latent to the observed ones. We show that the support of transition matrix among the observed processes and lengths of all latent paths between any two observed processes can be identified successfully under some conditions on the VAR model. From the lengths of latent paths, we reconstruct the latent subgraph (representing the influences among the latent processes) with a minimum number of variables uniquely if its topology is a directed tree. Furthermore, we propose an algorithm that finds all possible minimal latent graphs under some conditions on the lengths of latent paths. Our results apply to both non-Gaussian and Gaussian cases, and experimental results on various synthetic and real-world datasets validate our theoretical results.
UR - http://www.scopus.com/inward/record.url?scp=85060431550&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85060431550
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 4000
EP - 4007
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI Press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -