Learning scalable discriminative dictionary with sample relatedness

Jiashi Feng, Stefanie Jegelka, Shuicheng Yan, Trevor Darrell

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

Attributes are widely used as mid-level descriptors of object properties in object recognition and retrieval. Mostly, such attributes are manually pre-defined based on domain knowledge, and their number is fixed. However, pre-defined attributes may fail to adapt to the properties of the data at hand, may not necessarily be discriminative, and/or may not generalize well. In this work, we propose a dictionary learning framework that flexibly adapts to the complexity of the given data set and reliably discovers the inherent discriminative middle-level binary features in the data. We use sample relatedness information to improve the generalization of the learned dictionary. %to steer the structure of the attribute representation for discrimination and generalization. We demonstrate that our framework is applicable to both object recognition and complex image retrieval tasks even with few training examples. Moreover, the learned dictionary also help classify novel object categories. Experimental results on the Animals with Attributes, ILSVRC2010 and PASCAL VOC2007 datasets indicate that using relatedness information leads to significant performance gains over established baselines.

Original languageEnglish
Title of host publicationProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublisherIEEE Computer Society
Pages1645-1652
Number of pages8
ISBN (Electronic)9781479951178, 9781479951178
DOIs
StatePublished - 24 Sep 2014
Externally publishedYes
Event27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014 - Columbus, United States
Duration: 23 Jun 201428 Jun 2014

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
Country/TerritoryUnited States
CityColumbus
Period23/06/1428/06/14

Fingerprint

Dive into the research topics of 'Learning scalable discriminative dictionary with sample relatedness'. Together they form a unique fingerprint.

Cite this