Learning meaningful controls for fluids

Mengyu Chu, Nils Thuerey, Hans Peter Seidel, Christian Theobalt, Rhaleb Zayer

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

While modern fluid simulation methods achieve high-quality simulation results, it is still a big challenge to interpret and control motion from visual quantities, such as the advected marker density. These visual quantities play an important role in user interactions: Being familiar and meaningful to humans, these quantities have a strong correlation with the underlying motion. We propose a novel data-driven conditional adversarial model that solves the challenging and theoretically ill-posed problem of deriving plausible velocity fields from a single frame of a density field. Besides density modifications, our generative model is the first to enable the control of the results using all of the following control modalities: obstacles, physical parameters, kinetic energy, and vorticity. Our method is based on a new conditional generative adversarial neural network that explicitly embeds physical quantities into the learned latent space, and a new cyclic adversarial network design for control disentanglement. We show the high quality and versatile controllability of our results for density-based inference, realistic obstacle interaction, and sensitive responses to modifications of physical parameters, kinetic energy, and vorticity. Code, models, and results can be found at https://github.com/RachelCmy/den2vel.

Original languageEnglish
Article number3459845
JournalACM Transactions on Graphics
Volume40
Issue number4
DOIs
StatePublished - 1 Jul 2021

Keywords

  • fluid simulation
  • generative adversarial network
  • user interaction

Fingerprint

Dive into the research topics of 'Learning meaningful controls for fluids'. Together they form a unique fingerprint.

Cite this