TY - GEN
T1 - Learning Linear Non-Gaussian Polytree Models
AU - Tramontano, Daniele
AU - Monod, Anthea
AU - Drton, Mathias
N1 - Publisher Copyright:
© 2022 Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022. All right reserved.
PY - 2022
Y1 - 2022
N2 - In the context of graphical causal discovery, we adapt the versatile framework of linear non-Gaussian acyclic models (LiNGAMs) to propose new algorithms to efficiently learn graphs that are polytrees. Our approach combines the Chow-Liu algorithm, which first learns the undirected tree structure, with novel schemes to orient the edges. The orientation schemes assess algebraic relations among moments of the data-generating distribution and are computationally inexpensive. We establish high-dimensional consistency results for our approach and compare different algorithmic versions in numerical experiments.
AB - In the context of graphical causal discovery, we adapt the versatile framework of linear non-Gaussian acyclic models (LiNGAMs) to propose new algorithms to efficiently learn graphs that are polytrees. Our approach combines the Chow-Liu algorithm, which first learns the undirected tree structure, with novel schemes to orient the edges. The orientation schemes assess algebraic relations among moments of the data-generating distribution and are computationally inexpensive. We establish high-dimensional consistency results for our approach and compare different algorithmic versions in numerical experiments.
UR - http://www.scopus.com/inward/record.url?scp=85146148987&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85146148987
T3 - Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022
SP - 1960
EP - 1969
BT - Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022
PB - Association For Uncertainty in Artificial Intelligence (AUAI)
T2 - 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022
Y2 - 1 August 2022 through 5 August 2022
ER -