LEARNING from NOISY SAMPLES for MAN-MADE IMPERVIOUS SURFACE MAPPING

C. Qiu, P. Gamba, M. Schmitt, X. X. Zhu

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

Man-made impervious surfaces, indicating the human footprint on Earth, are an environmental concern because it leads to a chain of events that modifies urban air and water resources. To better map man-made impervious surfaces in any region of interest (ROI), we propose a framework for learning to map impervious areas in any ROIs from Sentinel-2 images with noisy reference data, using a pre-Trained fully convolutional network (FCN). The FCN is first trained with reference data only available in Europe, which is able to provide reasonable mapping results even in areas outside of Europe. The proposed framework, aiming to achieve an improvement over the preliminary predictions for a specific ROI, consists of two steps: noisy training data pre-processing and model fine-Tuning with robust loss functions. The framework is validated over four test areas located in different continents with a measurable improvement over several baseline results. It has been shown that a better impervious mapping result can be achieved through a simple fine-Tuning with noisy training data, and label updating through robust loss functions allows to further enhance the performances. In addition, by analyzing and comparing the mapping results to baselines, it can be highlighted that the improvement is mainly coming from a decreased omission error. This study can also provide insights for similar tasks, such as large-scale land cover/land use classification when accurate reference data is not available for training.

Original languageEnglish
Pages (from-to)787-794
Number of pages8
JournalISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Volume5
Issue number3
DOIs
StatePublished - 3 Aug 2020
Event2020 24th ISPRS Congress on Technical Commission III - Nice, Virtual, France
Duration: 31 Aug 20202 Sep 2020

Keywords

  • Classification
  • Fully convolutional networks (FCNs)
  • Impervious surface mapping
  • Noisy samples
  • Robust loss function
  • Sentinel-2

Fingerprint

Dive into the research topics of 'LEARNING from NOISY SAMPLES for MAN-MADE IMPERVIOUS SURFACE MAPPING'. Together they form a unique fingerprint.

Cite this