Learning-Based Real-Time Torque Prediction for Grasping Unknown Objects with a Multi-Fingered Hand

Dominik Winkelbauer, Berthold Bauml, Rudolph Triebel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

When grasping objects with a multi-finger hand, it is crucial for the grasp stability to apply the correct torques at each joint so that external forces are countered. Most current systems use simple heuristics instead of modeling the required torque correctly. Instead, we propose a learning-based approach that is able to predict torques for grasps on unknown objects in real-time. The neural network, trained end-to-end using supervised learning, is shown to predict torques that are more efficient, and the objects are held with less involuntary movement compared to all tested heuristic baselines. Specifically, for 90 % of the grasps the translational deviation of the object is below 2.9 mm and the rotational below 3.1°. To generate training data, we formulate the analytical computation of torques as an optimization problem and handle the indeterminacy of multi-contacts using an elastic model. We further show that the network generalizes to predict torques for unknown objects on the real robot system with an inference time of 1.5 ms. Website: dlr-alr.github.io/grasping/

Original languageEnglish
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2979-2984
Number of pages6
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: 1 Oct 20235 Oct 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period1/10/235/10/23

Fingerprint

Dive into the research topics of 'Learning-Based Real-Time Torque Prediction for Grasping Unknown Objects with a Multi-Fingered Hand'. Together they form a unique fingerprint.

Cite this