Learning and Adapting Behavior of Autonomous Vehicles through Inverse Reinforcement Learning

Rainer Trauth, Marc Kaufeld, Maximilian Geisslinger, Johannes Betz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

The driving behavior of autonomous vehicles has a significant impact on safety for all traffic participants. Unlike current traffic participants, autonomous vehicles in the future will also need to adhere to safety standards and defined risk properties in order to achieve a high level of public acceptance. At the same time, successful autonomous vehicles must be able to interact with human drivers in mixed traffic in a way that enables traffic to flow. In this paper, we present a hybrid approach to trajectory planning that learns and adapts human driving behavior using inverse reinforcement learning. The proposed approach performs a large-scale simulation with HighD real-world scenarios to learn human driving behavior and domain-specific traffic-flow characteristics. The analysis of the work focuses on the influence of risk-taking, which provides information about driving style safety. The results show insights into the risk behavior of trajectory planning approaches compared to human risk assessment. The comparison to human trajectories is intended to ensure comparability and accurate classification of risk-taking. We recommend a hybrid method for adapting driving behavior, in order to maintain the explainability and safety of the trajectory planning algorithm.

Original languageEnglish
Title of host publicationIV 2023 - IEEE Intelligent Vehicles Symposium, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350346916
DOIs
StatePublished - 2023
Event34th IEEE Intelligent Vehicles Symposium, IV 2023 - Anchorage, United States
Duration: 4 Jun 20237 Jun 2023

Publication series

NameIEEE Intelligent Vehicles Symposium, Proceedings
Volume2023-June

Conference

Conference34th IEEE Intelligent Vehicles Symposium, IV 2023
Country/TerritoryUnited States
CityAnchorage
Period4/06/237/06/23

Fingerprint

Dive into the research topics of 'Learning and Adapting Behavior of Autonomous Vehicles through Inverse Reinforcement Learning'. Together they form a unique fingerprint.

Cite this