Lattice modulation spectroscopy of one-dimensional quantum gases: Universal scaling of the absorbed energy

R. Citro, E. Demler, T. Giamarchi, M. Knap, E. Orignac

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Lattice modulation spectroscopy is a powerful tool for probing low-energy excitations of interacting many-body systems. By means of bosonization we analyze the absorbed power in a one-dimensional interacting quantum gas of bosons or fermions, subjected to a periodic drive of the optical lattice. For these Tomonaga-Luttinger liquids we find a universal ω3 scaling of the absorbed power, which at very low-frequency turns into an ω2 scaling when scattering processes at the boundary of the system are taken into account. We confirm this behavior numerically by simulations based on time-dependent matrix product states. Furthermore, in the presence of impurities, the theory predicts an ω2 bulk scaling. While typical response functions of Tomonaga-Luttinger liquids are characterized by exponents that depend on the interaction strength, modulation spectroscopy of cold atoms leads to a universal power-law exponent of the absorbed power. Our findings can be readily demonstrated in ultracold atoms in optical lattices with current experimental technology.

Original languageEnglish
Article number033187
JournalPhysical Review Research
Volume2
Issue number3
DOIs
StatePublished - Aug 2020

Fingerprint

Dive into the research topics of 'Lattice modulation spectroscopy of one-dimensional quantum gases: Universal scaling of the absorbed energy'. Together they form a unique fingerprint.

Cite this