Landmark localisation in brain MR images using feature point descriptors based on 3D local self-similarities

Ricardo Guerrero, Luis Pizarro, Robin Wolz, Daniel Rueckert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

The identification of anatomical landmarks in the brain is an important task in registration and morphometry. The manual identification and labelling of these landmarks is very time consuming and prone to observer errors, especially when large datasets must be analysed. In this paper we present an approach that describes landmarks based on their intrinsic geometry, rather than their intensity patterns. As the proposed approach moves away from the traditional way to describe landmarks (based on intensities), we show that using this kind of descriptors are well suited for the landmark localisation problem in MR brain images since the intensity information in these images is not quantitative (and intensity normalization is not straight forward). Our results show that for localizing 20 anatomical landmarks in brain MR images, the proposed descriptor performs better in 75% of cases when compared with a Haar feature based classifier and 100% of cases when compared to non-rigid registration.

Original languageEnglish
Title of host publication2012 9th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI 2012 - Proceedings
Pages1535-1538
Number of pages4
DOIs
StatePublished - 2012
Externally publishedYes
Event2012 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2012 - Barcelona, Spain
Duration: 2 May 20125 May 2012

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference2012 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2012
Country/TerritorySpain
CityBarcelona
Period2/05/125/05/12

Keywords

  • Landmark detection
  • feature descriptors
  • registration
  • self-similarity

Fingerprint

Dive into the research topics of 'Landmark localisation in brain MR images using feature point descriptors based on 3D local self-similarities'. Together they form a unique fingerprint.

Cite this