Landmark-Free Statistical Shape Modeling Via Neural Flow Deformations

David Lüdke, Tamaz Amiranashvili, Felix Ambellan, Ivan Ezhov, Bjoern H. Menze, Stefan Zachow

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Statistical shape modeling aims at capturing shape variations of an anatomical structure that occur within a given population. Shape models are employed in many tasks, such as shape reconstruction and image segmentation, but also shape generation and classification. Existing shape priors either require dense correspondence between training examples or lack robustness and topological guarantees. We present FlowSSM, a novel shape modeling approach that learns shape variability without requiring dense correspondence between training instances. It relies on a hierarchy of continuous deformation flows, which are parametrized by a neural network. Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior for distal femur and liver. We show that the emerging latent representation is discriminative by separating healthy from pathological shapes. Ultimately, we demonstrate its effectiveness on two shape reconstruction tasks from partial data. Our source code is publicly available (https://github.com/davecasp/flowssm ).

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
EditorsLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
PublisherSpringer Science and Business Media Deutschland GmbH
Pages453-463
Number of pages11
ISBN (Print)9783031164330
DOIs
StatePublished - 2022
Event25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sep 202222 Sep 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13432 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2222/09/22

Keywords

  • Representation learning
  • Shape prior
  • Statistical shape analysis

Fingerprint

Dive into the research topics of 'Landmark-Free Statistical Shape Modeling Via Neural Flow Deformations'. Together they form a unique fingerprint.

Cite this