L3DG: Latent 3D Gaussian Diffusion

Barbara Roessle, Norman Müller, Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder, Angela Dai, Matthias Niessner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We propose L3DG, the first approach for generative 3D modeling of 3D Gaussians through a latent 3D Gaussian diffusion formulation. This enables effective generative 3D modeling, scaling to generation of entire room-scale scenes which can be very efficiently rendered. To enable effective synthesis of 3D Gaussians, we propose a latent diffusion formulation, operating in a compressed latent space of 3D Gaussians. This compressed latent space is learned by a vector-quantized variational autoencoder (VQ-VAE), for which we employ a sparse convolutional architecture to efficiently operate on room-scale scenes. This way, the complexity of the costly generation process via diffusion is substantially reduced, allowing higher detail on object-level generation, as well as scalability to large scenes. By leveraging the 3D Gaussian representation, the generated scenes can be rendered from arbitrary viewpoints in real-time. We demonstrate that our approach significantly improves visual quality over prior work on unconditional object-level radiance field synthesis and showcase its applicability to room-scale scene generation.

Original languageEnglish
Title of host publicationProceedings - SIGGRAPH Asia 2024 Conference Papers, SA 2024
EditorsStephen N. Spencer
PublisherAssociation for Computing Machinery, Inc
ISBN (Electronic)9798400711312
DOIs
StatePublished - 3 Dec 2024
Event2024 SIGGRAPH Asia 2024 Conference Papers, SA 2024 - Tokyo, Japan
Duration: 3 Dec 20246 Dec 2024

Publication series

NameProceedings - SIGGRAPH Asia 2024 Conference Papers, SA 2024

Conference

Conference2024 SIGGRAPH Asia 2024 Conference Papers, SA 2024
Country/TerritoryJapan
CityTokyo
Period3/12/246/12/24

Keywords

  • 3D gaussian splatting
  • Generative 3D scene modeling
  • latent diffusion

Fingerprint

Dive into the research topics of 'L3DG: Latent 3D Gaussian Diffusion'. Together they form a unique fingerprint.

Cite this