Koopman Kernel Regression

Petar Bevanda, Max Beier, Armin Lederer, Stefan Sosnowski, Eyke Hüllermeier, Sandra Hirche

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

Many machine learning approaches for decision making, such as reinforcement learning, rely on simulators or predictive models to forecast the time-evolution of quantities of interest, e.g., the state of an agent or the reward of a policy. Forecasts of such complex phenomena are commonly described by highly nonlinear dynamical systems, making their use in optimization-based decision-making challenging. Koopman operator theory offers a beneficial paradigm for addressing this problem by characterizing forecasts via linear time-invariant (LTI) ODEs, turning multistep forecasts into sparse matrix multiplication. Though there exists a variety of learning approaches, they usually lack crucial learning-theoretic guarantees, making the behavior of the obtained models with increasing data and dimensionality unclear. We address the aforementioned by deriving a universal Koopman-invariant reproducing kernel Hilbert space (RKHS) that solely spans transformations into LTI dynamical systems. The resulting Koopman Kernel Regression (KKR) framework enables the use of statistical learning tools from function approximation for novel convergence results and generalization error bounds under weaker assumptions than existing work. Our experiments demonstrate superior forecasting performance compared to Koopman operator and sequential data predictors in RKHS.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: 10 Dec 202316 Dec 2023

Fingerprint

Dive into the research topics of 'Koopman Kernel Regression'. Together they form a unique fingerprint.

Cite this