TY - JOUR
T1 - Koopman Kernel Regression
AU - Bevanda, Petar
AU - Beier, Max
AU - Lederer, Armin
AU - Sosnowski, Stefan
AU - Hüllermeier, Eyke
AU - Hirche, Sandra
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Many machine learning approaches for decision making, such as reinforcement learning, rely on simulators or predictive models to forecast the time-evolution of quantities of interest, e.g., the state of an agent or the reward of a policy. Forecasts of such complex phenomena are commonly described by highly nonlinear dynamical systems, making their use in optimization-based decision-making challenging. Koopman operator theory offers a beneficial paradigm for addressing this problem by characterizing forecasts via linear time-invariant (LTI) ODEs, turning multistep forecasts into sparse matrix multiplication. Though there exists a variety of learning approaches, they usually lack crucial learning-theoretic guarantees, making the behavior of the obtained models with increasing data and dimensionality unclear. We address the aforementioned by deriving a universal Koopman-invariant reproducing kernel Hilbert space (RKHS) that solely spans transformations into LTI dynamical systems. The resulting Koopman Kernel Regression (KKR) framework enables the use of statistical learning tools from function approximation for novel convergence results and generalization error bounds under weaker assumptions than existing work. Our experiments demonstrate superior forecasting performance compared to Koopman operator and sequential data predictors in RKHS.
AB - Many machine learning approaches for decision making, such as reinforcement learning, rely on simulators or predictive models to forecast the time-evolution of quantities of interest, e.g., the state of an agent or the reward of a policy. Forecasts of such complex phenomena are commonly described by highly nonlinear dynamical systems, making their use in optimization-based decision-making challenging. Koopman operator theory offers a beneficial paradigm for addressing this problem by characterizing forecasts via linear time-invariant (LTI) ODEs, turning multistep forecasts into sparse matrix multiplication. Though there exists a variety of learning approaches, they usually lack crucial learning-theoretic guarantees, making the behavior of the obtained models with increasing data and dimensionality unclear. We address the aforementioned by deriving a universal Koopman-invariant reproducing kernel Hilbert space (RKHS) that solely spans transformations into LTI dynamical systems. The resulting Koopman Kernel Regression (KKR) framework enables the use of statistical learning tools from function approximation for novel convergence results and generalization error bounds under weaker assumptions than existing work. Our experiments demonstrate superior forecasting performance compared to Koopman operator and sequential data predictors in RKHS.
UR - http://www.scopus.com/inward/record.url?scp=85188852950&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85188852950
SN - 1049-5258
VL - 36
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
Y2 - 10 December 2023 through 16 December 2023
ER -