TY - JOUR
T1 - Knowledge-driven intelligent quality problem-solving system in the automotive industry
AU - Xu, Zhaoguang
AU - Dang, Yanzhong
AU - Munro, Peter
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/10
Y1 - 2018/10
N2 - In the current automotive industry, quality management, especially quality problem-solving (QPS), plays an important role in fulfilling the expectations of demanding customers who seek high-quality products at low-cost. During the problem-solving process, various real-time and historical quality data are often not fully used, yet these data are of high value. This paper provides a comprehensive quality data mining process and method, as well as an intelligent quality problem-solving system (IQPSS). First, based on original quality problem data, an ontology library is constructed using the ontology generating module (OGM). Second, based on the generated ontology and the textual data of the original quality problem, this study builds a quality problem-solving knowledge base (QPSKB) by employing relevant algorithms in the knowledge transformation module (KTM). The component and fault relational matrix mining (CFRMM) algorithm is designed to extract the relationship matrix between the components and faults. The semi-supervised classification algorithm based on the K-nearest neighbor algorithm (KNN) is used to classify the immediate measures, causes and long-term measures into the corresponding ontology and express the ontology as their knowledge. Furthermore, the binary tree-based support vector machine (SVM) approach is applied to classify the cause texts into the factors of Man, Machine, Material, Method, and Environment (4M1E), which are the five factors in a fishbone diagram. In particular, the digital fishbone diagram is a brand-new type of fishbone diagram that subverts the traditional method of fishbone diagram analysis through brainstorming. A pilot run of the IQPSS has been undertaken in an automotive manufacturing company to demonstrate how quality management employees obtain this knowledge by searching in the IQPSS. The results show that the IQPSS contributes appreciably to the quality problem-solving in the manufacturing industry.
AB - In the current automotive industry, quality management, especially quality problem-solving (QPS), plays an important role in fulfilling the expectations of demanding customers who seek high-quality products at low-cost. During the problem-solving process, various real-time and historical quality data are often not fully used, yet these data are of high value. This paper provides a comprehensive quality data mining process and method, as well as an intelligent quality problem-solving system (IQPSS). First, based on original quality problem data, an ontology library is constructed using the ontology generating module (OGM). Second, based on the generated ontology and the textual data of the original quality problem, this study builds a quality problem-solving knowledge base (QPSKB) by employing relevant algorithms in the knowledge transformation module (KTM). The component and fault relational matrix mining (CFRMM) algorithm is designed to extract the relationship matrix between the components and faults. The semi-supervised classification algorithm based on the K-nearest neighbor algorithm (KNN) is used to classify the immediate measures, causes and long-term measures into the corresponding ontology and express the ontology as their knowledge. Furthermore, the binary tree-based support vector machine (SVM) approach is applied to classify the cause texts into the factors of Man, Machine, Material, Method, and Environment (4M1E), which are the five factors in a fishbone diagram. In particular, the digital fishbone diagram is a brand-new type of fishbone diagram that subverts the traditional method of fishbone diagram analysis through brainstorming. A pilot run of the IQPSS has been undertaken in an automotive manufacturing company to demonstrate how quality management employees obtain this knowledge by searching in the IQPSS. The results show that the IQPSS contributes appreciably to the quality problem-solving in the manufacturing industry.
KW - Automotive industry
KW - Digital fishbone diagram
KW - Intelligent quality problem-solving
KW - Knowledge management
KW - Ontology
KW - Quality management
UR - http://www.scopus.com/inward/record.url?scp=85052849303&partnerID=8YFLogxK
U2 - 10.1016/j.aei.2018.08.013
DO - 10.1016/j.aei.2018.08.013
M3 - Article
AN - SCOPUS:85052849303
SN - 1474-0346
VL - 38
SP - 441
EP - 457
JO - Advanced Engineering Informatics
JF - Advanced Engineering Informatics
ER -