Keypoint transfer segmentation

C. Wachinger, M. Toews, G. Langs, W. Wells, P. Golland

Research output: Contribution to journalConference articlepeer-review

11 Scopus citations

Abstract

We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm’s robustness enables the segmentation of scans with highly variable field-of-view.

Original languageEnglish
Pages (from-to)233-245
Number of pages13
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9123
DOIs
StatePublished - 2015
Externally publishedYes
Event24th International Conference on Information Processing in Medical Imaging, IPMI 2015 - Isle of Skye, United Kingdom
Duration: 28 Jun 20153 Jul 2015

Fingerprint

Dive into the research topics of 'Keypoint transfer segmentation'. Together they form a unique fingerprint.

Cite this