Kernel point convolution LSTM networks for radar point cloud segmentation

Felix Nobis, Felix Fent, Johannes Betz, Markus Lienkamp

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

State-of-the-art 3D object detection for autonomous driving is achieved by processing lidar sensor data with deep-learning methods. However, the detection quality of the state of the art is still far from enabling safe driving in all conditions. Additional sensor modalities need to be used to increase the confidence and robustness of the overall detection result. Researchers have recently explored radar data as an additional input source for universal 3D object detection. This paper proposes artificial neural network architectures to segment sparse radar point cloud data. Segmentation is an intermediate step towards radar object detection as a complementary concept to lidar object detection. Conceptually, we adapt Kernel Point Convolution (KPConv) layers for radar data. Additionally, we introduce a long short-term memory (LSTM) variant based on KPConv layers to make use of the information content in the time dimension of radar data. This is motivated by classical radar processing, where tracking of features over time is imperative to generate confident object proposals. We benchmark several variants of the network on the public nuScenes data set against a state-of-the-art pointnet-based approach. The performance of the networks is limited by the quality of the publicly available data. The radar data and radar-label quality is of great importance to the training and evaluation of machine learning models. Therefore, the advantages and disadvantages of the available data set, regarding its radar data, are discussed in detail. The need for a radar-focused data set for object detection is expressed. We assume that higher segmentation scores should be achievable with better-quality data for all models compared, and differences between the models should manifest more clearly. To facilitate research with additional radar data, the modular code for this research will be made available to the public.

Original languageEnglish
Article number2599
JournalApplied Sciences (Switzerland)
Volume11
Issue number6
DOIs
StatePublished - 2 Mar 2021

Keywords

  • Deep learning
  • Object detection
  • Perception
  • Radar point cloud
  • Radar segmentation

Fingerprint

Dive into the research topics of 'Kernel point convolution LSTM networks for radar point cloud segmentation'. Together they form a unique fingerprint.

Cite this