TY - GEN
T1 - Just can't get enough - Synthesizing big data
AU - Rabl, Tilmann
AU - Danisch, Manuel
AU - Frank, Michael
AU - Jacobsen, Hans Arno
PY - 2015/5/27
Y1 - 2015/5/27
N2 - With the rapidly decreasing prices for storage and storage systems ever larger data sets become economical. While only few years ago only successful transactions would be recorded in sales systems, today every user interaction will be stored for ever deeper analysis and richer user modeling. This has led to the development of big data systems, which offer high scalability and novel forms of analysis. Due to the rapid development and ever increasing variety of the big data landscape, there is a pressing need for tools for testing and benchmarking. Vendors have little options to showcase the performance of their systems but to use trivial data sets like TeraSort or WordCount. Since customers' real data is typically subject to privacy regulations and rarely can be utilized, simplistic proof-of-concepts have to be used, leaving both, customers and vendors, unclear of the target use-case performance. As a solution, we present an automatic approach to data synthetization from existing data sources. Our system enables a fully automatic generation of large amounts of complex, realistic, synthetic data.
AB - With the rapidly decreasing prices for storage and storage systems ever larger data sets become economical. While only few years ago only successful transactions would be recorded in sales systems, today every user interaction will be stored for ever deeper analysis and richer user modeling. This has led to the development of big data systems, which offer high scalability and novel forms of analysis. Due to the rapid development and ever increasing variety of the big data landscape, there is a pressing need for tools for testing and benchmarking. Vendors have little options to showcase the performance of their systems but to use trivial data sets like TeraSort or WordCount. Since customers' real data is typically subject to privacy regulations and rarely can be utilized, simplistic proof-of-concepts have to be used, leaving both, customers and vendors, unclear of the target use-case performance. As a solution, we present an automatic approach to data synthetization from existing data sources. Our system enables a fully automatic generation of large amounts of complex, realistic, synthetic data.
UR - http://www.scopus.com/inward/record.url?scp=84957566929&partnerID=8YFLogxK
U2 - 10.1145/2723372.2735378
DO - 10.1145/2723372.2735378
M3 - Conference contribution
AN - SCOPUS:84957566929
T3 - Proceedings of the ACM SIGMOD International Conference on Management of Data
SP - 1457
EP - 1462
BT - SIGMOD 2015 - Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
PB - Association for Computing Machinery
T2 - ACM SIGMOD International Conference on Management of Data, SIGMOD 2015
Y2 - 31 May 2015 through 4 June 2015
ER -