Joint reconstruction of multi-contrast MRI for multiple sclerosis lesion segmentation

Pedro A. Gómez, Jonathan I. Sperl, Tim Sprenger, Claudia Metzler-Baddeley, Derek K. Jones, Philipp Saemann, Michael Czisch, Marion I. Menzel, Bjoern H. Menze

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

A joint reconstruction framework for multi-contrast MR images is presented and evaluated. The evaluation takes place in function of quality criteria based on reconstruction results and performance in the automatic segmentation of Multiple Sclerosis (MS) lesions. We show that joint reconstruction can effectively recover artificially corrupted images and is robust to noise.

Original languageEnglish
Title of host publicationBildverarbeitung fur die Medizin 2015
Subtitle of host publicationAlgorithmen - Systeme - Anwendungen, Proceedings des Workshops, 2015
EditorsThomas Martin Deserno, Thomas Tolxdorff, Heinz Handels, Hans-Peter Meinzer
PublisherKluwer Academic Publishers
Pages155-160
Number of pages6
ISBN (Print)9783662462232
DOIs
StatePublished - 2015
EventWorkshops on Image Processing for Medicine,2015:Algorthim-Systems-Applications - Lubeck, Germany
Duration: 15 Mar 201517 Mar 2015

Publication series

NameInformatik aktuell
ISSN (Print)1431-472X

Conference

ConferenceWorkshops on Image Processing for Medicine,2015:Algorthim-Systems-Applications
Country/TerritoryGermany
CityLubeck
Period15/03/1517/03/15

Fingerprint

Dive into the research topics of 'Joint reconstruction of multi-contrast MRI for multiple sclerosis lesion segmentation'. Together they form a unique fingerprint.

Cite this