I2mpedance - A Passivity Based Integrative Impedance Controller for Precise and Compliant Manipulation and Interaction

Florian Voigt, Abdeldjallil Naceri, Sami Haddadin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Sophisticated manipulation requires both compliance and accuracy. While tactile robots excel at being compliant, their accuracy is often inadequate for complex manipulation. Contact-rich assembly tasks, such as the insertion and manipulation of objects with small tolerances pose an enormous challenge. Complex, highly integrated assemblies, especially in high-tech areas such as robotics, sensors, or machines, still require human personnel, as they cannot be automated in a satisfactory way. To automate such tasks, especially in the context of labor shortage and Industry 4.0, these limitations must be overcome. Robots need to guarantee force limits for active environments in order to avoid harm or damage. Therefore, in this work, we adapt standard Cartesian impedance control by introducing an integration term for position accuracy and wrench limits for safe compliant interaction with unknown and active environments. We combine this with a virtual energy tank to guarantee the general passivity of the controller. Our controller is benchmarked against standard impedance control for absolute positioning accuracy across the robot workspace. Furthermore, we show its applicability to an industrial insertion task. We demonstrate absolute positioning accuracy (residual error| Ax| < 4e - 4) comparable to rigid robots while preserving compliant behavior.

Original languageEnglish
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4472-4479
Number of pages8
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: 1 Oct 20235 Oct 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period1/10/235/10/23

Fingerprint

Dive into the research topics of 'I2mpedance - A Passivity Based Integrative Impedance Controller for Precise and Compliant Manipulation and Interaction'. Together they form a unique fingerprint.

Cite this