TY - JOUR
T1 - Isotope geochemistry and fluid inclusion study of skarns from Vesuvius
AU - Gilg, H. A.
AU - Lima, A.
AU - Somma, R.
AU - Belkin, H. E.
AU - De Vivo, B.
AU - Ayuso, R. A.
PY - 2001
Y1 - 2001
N2 - We present new mineral chemistry, fluid inclusion, stable carbon and oxygen, as well as Pb, Sr, and Nd isotope data of Ca-Mg-silicate-rich ejecta (skarns) and associated cognate and xenolithic nodules from the Mt. Somma-Vesuvius volcanic complex, Italy. The typically zoned skarn ejecta consist mainly of diopsidic and hedenbergitic, sometimes "fassaitic" clinopyroxene, Mg-rich and Ti-poor phlogopite, F-bearing vesuvianite, wollastonite, gehlenite, meionite, forsterite, clinohumite, anorthite and Mg-poor calcite with accessory apatite, spinell, magnetite, perovskite, baddeleyite, and various REE-, U-, Th-, Zr- and Ti-rich minerals. Four major types of fluid inclusions were observed in wollastonite, vesuvianite, gehlenite, clinopyroxene and calcite: a) primary silicate melt inclusions (THOM = 1000-1050°C), b) CO2 ± H2S-rich fluid inclusions (THOM = 20-31.3°C into the vapor phase), c) multiphase aqueous brine inclusions (THOM = 720-820°C) with mainly sylvite and halite daughter minerals, and d) complex chloride-carbonate-sulfate-fluoride-silicate-bearing saline-melt inclusions (THOM = 870-890°C). The last inclusion type shows evidence for immiscibility between several fluids (silicate melt - aqueous chloride-rich liquid - carbonate/sulfate melt?) during heating and cooling below 870°C. There is no evidence for fluid circulation below 700°C and participation of externally derived meteoric fluids in skarn formation. Skarns have considerably variable 206Pb/204Pb (19.047-19.202), 207Pb/204Pb (15.655-15.670), and 208Pb/204Pb (38.915-39.069) and relatively low 143Nd/144Nd (0.51211-0.51244) ratios. The carbon and oxygen isotope compositions of skarn calcites (δ13CV-PDB = -5.4 to -1.1‰; δ18OV-SMOW = 11.7 to 16.4‰) indicate formation from a 18O- and 13C-enriched fluid. The isotope composition of skarns and the presence of silicate melt inclusion-bearing wollastonite nodules suggests assimilation of carbonate wall rocks by the alkaline magma at moderate depths (< 5 km) and consequent exsolution of CO2-rich vapor and complex saline melts from the contaminated magma that reacted with the carbonate rocks to form skarns.
AB - We present new mineral chemistry, fluid inclusion, stable carbon and oxygen, as well as Pb, Sr, and Nd isotope data of Ca-Mg-silicate-rich ejecta (skarns) and associated cognate and xenolithic nodules from the Mt. Somma-Vesuvius volcanic complex, Italy. The typically zoned skarn ejecta consist mainly of diopsidic and hedenbergitic, sometimes "fassaitic" clinopyroxene, Mg-rich and Ti-poor phlogopite, F-bearing vesuvianite, wollastonite, gehlenite, meionite, forsterite, clinohumite, anorthite and Mg-poor calcite with accessory apatite, spinell, magnetite, perovskite, baddeleyite, and various REE-, U-, Th-, Zr- and Ti-rich minerals. Four major types of fluid inclusions were observed in wollastonite, vesuvianite, gehlenite, clinopyroxene and calcite: a) primary silicate melt inclusions (THOM = 1000-1050°C), b) CO2 ± H2S-rich fluid inclusions (THOM = 20-31.3°C into the vapor phase), c) multiphase aqueous brine inclusions (THOM = 720-820°C) with mainly sylvite and halite daughter minerals, and d) complex chloride-carbonate-sulfate-fluoride-silicate-bearing saline-melt inclusions (THOM = 870-890°C). The last inclusion type shows evidence for immiscibility between several fluids (silicate melt - aqueous chloride-rich liquid - carbonate/sulfate melt?) during heating and cooling below 870°C. There is no evidence for fluid circulation below 700°C and participation of externally derived meteoric fluids in skarn formation. Skarns have considerably variable 206Pb/204Pb (19.047-19.202), 207Pb/204Pb (15.655-15.670), and 208Pb/204Pb (38.915-39.069) and relatively low 143Nd/144Nd (0.51211-0.51244) ratios. The carbon and oxygen isotope compositions of skarn calcites (δ13CV-PDB = -5.4 to -1.1‰; δ18OV-SMOW = 11.7 to 16.4‰) indicate formation from a 18O- and 13C-enriched fluid. The isotope composition of skarns and the presence of silicate melt inclusion-bearing wollastonite nodules suggests assimilation of carbonate wall rocks by the alkaline magma at moderate depths (< 5 km) and consequent exsolution of CO2-rich vapor and complex saline melts from the contaminated magma that reacted with the carbonate rocks to form skarns.
UR - http://www.scopus.com/inward/record.url?scp=0141709547&partnerID=8YFLogxK
U2 - 10.1007/s007100170015
DO - 10.1007/s007100170015
M3 - Article
AN - SCOPUS:0141709547
SN - 0930-0708
VL - 73
SP - 145
EP - 176
JO - Mineralogy and Petrology
JF - Mineralogy and Petrology
IS - 1-3
ER -