TY - JOUR
T1 - Isolation, Culture and Functional Characterization of Glia and Endothelial Cells From Adult Pig Brain
AU - Tanti, Goutam Kumar
AU - Srivastava, Rajneesh
AU - Kalluri, Sudhakar Reddy
AU - Nowak, Carina
AU - Hemmer, Bernhard
N1 - Publisher Copyright:
© Copyright © 2019 Tanti, Srivastava, Kalluri, Nowak and Hemmer.
PY - 2019/7/23
Y1 - 2019/7/23
N2 - Primary cultures of glial and endothelial cells are important tools for basic and translational neuroscience research. Primary cell cultures are usually generated from rodent brain although considerable differences exist between human and rodent glia and endothelial cells. Because many translational research projects aim to identify mechanisms that eventually lead to diagnostic and therapeutic approaches to target human diseases, glia, and endothelial cultures are needed that better reflect the human central nervous system (CNS). Pig brain is easily accessible and, in many aspects, close to the human brain. We established an easy and cost-effective method to isolate and culture different primary glial and endothelial cells from adult pig brain. Oligodendrocyte, microglia, astrocyte, and endothelial primary cell cultures were generated from the same brain tissue and grown for up to 8 weeks. Primary cells showed lineage-specific morphology and expressed specific markers with a purity ranging from 60 to 95%. Cultured oligodendrocytes myelinated neurons and microglia secreted tumor necrosis factor alpha when induced with lipopolysaccharide. Endothelial cells showed typical tube formation when grown on Matrigel. Astrocytes enhanced survival of co-cultured neurons and were killed by Aquaporin-4 antibody positive sera from patients with Neuromyelitis optica. In summary, we established a new method for primary oligodendrocyte, microglia, endothelial and astrocyte cell cultures from pig brain that provide a tool for translational research on human CNS diseases.
AB - Primary cultures of glial and endothelial cells are important tools for basic and translational neuroscience research. Primary cell cultures are usually generated from rodent brain although considerable differences exist between human and rodent glia and endothelial cells. Because many translational research projects aim to identify mechanisms that eventually lead to diagnostic and therapeutic approaches to target human diseases, glia, and endothelial cultures are needed that better reflect the human central nervous system (CNS). Pig brain is easily accessible and, in many aspects, close to the human brain. We established an easy and cost-effective method to isolate and culture different primary glial and endothelial cells from adult pig brain. Oligodendrocyte, microglia, astrocyte, and endothelial primary cell cultures were generated from the same brain tissue and grown for up to 8 weeks. Primary cells showed lineage-specific morphology and expressed specific markers with a purity ranging from 60 to 95%. Cultured oligodendrocytes myelinated neurons and microglia secreted tumor necrosis factor alpha when induced with lipopolysaccharide. Endothelial cells showed typical tube formation when grown on Matrigel. Astrocytes enhanced survival of co-cultured neurons and were killed by Aquaporin-4 antibody positive sera from patients with Neuromyelitis optica. In summary, we established a new method for primary oligodendrocyte, microglia, endothelial and astrocyte cell cultures from pig brain that provide a tool for translational research on human CNS diseases.
KW - astrocytes
KW - endothelial cells
KW - glial cells
KW - microglia
KW - oligodendrocytes
KW - pig brain
KW - reliable method
UR - http://www.scopus.com/inward/record.url?scp=85072106752&partnerID=8YFLogxK
U2 - 10.3389/fncel.2019.00333
DO - 10.3389/fncel.2019.00333
M3 - Article
AN - SCOPUS:85072106752
SN - 1662-5102
VL - 13
JO - Frontiers in Cellular Neuroscience
JF - Frontiers in Cellular Neuroscience
M1 - 333
ER -