@inproceedings{ac4ca5504f4d42708d1b94fcc11398c6,
title = "Investigations of strain rate sensitivity under different stress triaxialities for DC04",
abstract = "Understanding the strain rate sensitivity of materials is essential for predicting their behavior in sheet metal forming. While uniaxial tension tests are state of the art in characterizing this sensitivity, the deformation response of materials under different loading conditions can significantly deviate from uniaxial behavior. This paper presents a comprehensive study of the strain rate sensitivity of DC04 through a series of experimental investigations with different strain rates. In addition to uniaxial tension tests, the study investigates the strain rate sensitivity under shear and plane strain tests, providing a comprehensive analysis of strain rate sensitivity across different loading scenarios. The investigation aims to understand how the material responds to varying deformation rates, focusing on characterizing their deformation behavior under various loading conditions. The authors collected experimental data from the material with a DIC system. They analyzed it to derive material-specific parameters that describe their strain rate-dependent responses depending on the stress state. To explain this, the authors calibrated three models: Johnson Cook, Cowper Symonds, and Huh Kang.",
keywords = "Deep Drawing, Sheet Metal Forming, Strain Rate Sensitivity, Stress Triaxiality",
author = "Lorenz Maier and Edgar Marker and Fabian Schulz and Wolfram Volk",
note = "Publisher Copyright: {\textcopyright} 2024, Association of American Publishers. All rights reserved.; 27th International ESAFORM Conference on Material Forming, ESAFORM 2024 ; Conference date: 24-04-2024 Through 26-04-2024",
year = "2024",
doi = "10.21741/9781644903131-234",
language = "English",
isbn = "9781644903131",
series = "Materials Research Proceedings",
publisher = "Association of American Publishers",
pages = "2124--2133",
editor = "Araujo, {Anna Carla} and Arthur Cantarel and France Chabert and Adrian Korycki and Philippe Olivier and Fabrice Schmidt",
booktitle = "Material Forming, ESAFORM 2024",
}