TY - JOUR
T1 - Intratumoral heterogeneity in breast carcinoma revealed by laser- microdissection and comparative genomic hybridization
AU - Aubele, Michaela
AU - Mattis, Anita
AU - Zitzelsberger, Horst
AU - Walch, Axel
AU - Kremer, Markus
AU - Hutzler, Peter
AU - Höfler, Heinz
AU - Werner, Martin
N1 - Funding Information:
The authors gratefully acknowledge the technical assistance of Daniela Angermaier and Sigrid Schulte-Overberg. This work was supported by the Wilhelm Sander-Stiftung (829 872/1), München, Germany.
PY - 1999/4/15
Y1 - 1999/4/15
N2 - To evaluate the potential cytogenetic heterogeneity in breast carcinoma, several small cell groups (each consisting of 20 to 50 cells) were investigated within paraffin sections. By laser-microdissection, three to seven cell groups were taken per case. The DATA was amplified by degenerate oligonucleotide primed PCR (DOP-PCR), and the samples were analyzed by CGH for chromosomal gains and losses. Two ductal invasive breast carcinomas, one of them with two lymphnode metastases, were investigated. To compare the results from the small samples, CGH was also performed on DNA isolated from the tumorous regions of three to five serial sections (107 to 106 cells). The aberrations observed in the microdissected tumor samples were multiple and involved up to 14 different chromosomal or subchromosomal regions. The most frequent changes were gains on chromosomes 12q (14/20) and 20q (16/20), and loss on 13q (12/20). Some aberrations have rarely been detected (e.g., loss on 2p, gain on 8q). Comparing chromosomal imbalances in primary tumors and lymph node metastases, more consistent changes were found between the primary tumor and its corresponding metastases than between both primary tumors. The laser-microdissected samples in general showed more chromosomal aberrations than DNA isolated from several tumor sections. Our CGH results were confirmed by fluorescence in situ hybridization (FISH) for the chromosomal regions of centromere 1 and 20, and 20q13. In addition, microsatellite analyses on 31 samples confirmed our CGH findings for selected chromosome regions 2p and 11q. It can be concluded that there is a distinct intratumoral heterogeneity in primary breast tumors as well as in the corresponding lymph node metastases. The combination of microdissection and CGH enabled us to detect cytogenetic aberrations from important clones which are missed when analyzing DNA extracted from large cell numbers.
AB - To evaluate the potential cytogenetic heterogeneity in breast carcinoma, several small cell groups (each consisting of 20 to 50 cells) were investigated within paraffin sections. By laser-microdissection, three to seven cell groups were taken per case. The DATA was amplified by degenerate oligonucleotide primed PCR (DOP-PCR), and the samples were analyzed by CGH for chromosomal gains and losses. Two ductal invasive breast carcinomas, one of them with two lymphnode metastases, were investigated. To compare the results from the small samples, CGH was also performed on DNA isolated from the tumorous regions of three to five serial sections (107 to 106 cells). The aberrations observed in the microdissected tumor samples were multiple and involved up to 14 different chromosomal or subchromosomal regions. The most frequent changes were gains on chromosomes 12q (14/20) and 20q (16/20), and loss on 13q (12/20). Some aberrations have rarely been detected (e.g., loss on 2p, gain on 8q). Comparing chromosomal imbalances in primary tumors and lymph node metastases, more consistent changes were found between the primary tumor and its corresponding metastases than between both primary tumors. The laser-microdissected samples in general showed more chromosomal aberrations than DNA isolated from several tumor sections. Our CGH results were confirmed by fluorescence in situ hybridization (FISH) for the chromosomal regions of centromere 1 and 20, and 20q13. In addition, microsatellite analyses on 31 samples confirmed our CGH findings for selected chromosome regions 2p and 11q. It can be concluded that there is a distinct intratumoral heterogeneity in primary breast tumors as well as in the corresponding lymph node metastases. The combination of microdissection and CGH enabled us to detect cytogenetic aberrations from important clones which are missed when analyzing DNA extracted from large cell numbers.
UR - http://www.scopus.com/inward/record.url?scp=0033560868&partnerID=8YFLogxK
U2 - 10.1016/S0165-4608(98)00205-2
DO - 10.1016/S0165-4608(98)00205-2
M3 - Article
C2 - 10214356
AN - SCOPUS:0033560868
SN - 0165-4608
VL - 110
SP - 94
EP - 102
JO - Cancer Genetics and Cytogenetics
JF - Cancer Genetics and Cytogenetics
IS - 2
ER -