TY - JOUR
T1 - Intraspecific variation of recombination rate in maize
AU - Bauer, Eva
AU - Falque, Matthieu
AU - Walter, Hildrun
AU - Bauland, Cyril
AU - Camisan, Christian
AU - Campo, Laura
AU - Meyer, Nina
AU - Ranc, Nicolas
AU - Rincent, Renaud
AU - Schipprack, Wolfgang
AU - Altmann, Thomas
AU - Flament, Pascal
AU - Melchinger, Albrecht E.
AU - Menz, Monica
AU - Moreno-González, Jesús
AU - Ouzunova, Milena
AU - Revilla, Pedro
AU - Charcosset, Alain
AU - Martin, Olivier C.
AU - Schön, Chris Carolin
N1 - Funding Information:
We thank Christine Dillmann, Philippe Brabant, and Domenica Manicacci for discussing statistical approaches, and Christine Mézard and Raphaël Mercier for helpful comments on the manuscript. We thank Michael Seidel for providing the physical map coordinates of SNP markers in the B73 AGPv2 assembly, and Hans-Jürgen Auinger, Christina Lehermeier, and Valentin Wimmer for help with R scripts. We also thank Ruedi Fries and Hubert Pausch for processing of SNP arrays and Stefan Schwertfirm for excellent technical assistance. Results have been achieved in the framework of the Transnational (Germany, France, Spain) Cooperation within the PLANT-KBBE Initiative Cornfed, additionally supported by the project AMAIZING. The work was financed by grants from Agence Nationale de la Recherche ('ANR') to AC, MF, MM, and PF, grants from the Ministry of Science and Innovation (Ministerio de Ciencia e Innovación ('MICINN')) to JMG and PR, and grants from the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, 'BMBF') to TA, AEM, MO, and CCS.
PY - 2013/9/19
Y1 - 2013/9/19
N2 - Background: In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation.Results: Here, we report on the variation of recombination rates between 22 European maize inbred lines that belong to the Dent and Flint gene pools. We genotype 23 doubled-haploid populations derived from crosses between these lines with a 50 k-SNP array and construct high-density genetic maps, showing good correspondence with the maize B73 genome sequence assembly. By aligning each genetic map to the B73 sequence, we obtain the recombination rates along chromosomes specific to each population. We identify significant differences in recombination rates at the genome-wide, chromosome, and intrachromosomal levels between populations, as well as significant variation for genome-wide recombination rates among maize lines. Crossover interference analysis using a two-pathway modeling framework reveals a negative association between recombination rate and interference strength.Conclusions: To our knowledge, the present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes. Differences found in recombination rates will allow for selection of high or low recombining lines in crossing programs. Our methodology should pave the way for precise identification of genes controlling recombination rates in maize and other organisms.
AB - Background: In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation.Results: Here, we report on the variation of recombination rates between 22 European maize inbred lines that belong to the Dent and Flint gene pools. We genotype 23 doubled-haploid populations derived from crosses between these lines with a 50 k-SNP array and construct high-density genetic maps, showing good correspondence with the maize B73 genome sequence assembly. By aligning each genetic map to the B73 sequence, we obtain the recombination rates along chromosomes specific to each population. We identify significant differences in recombination rates at the genome-wide, chromosome, and intrachromosomal levels between populations, as well as significant variation for genome-wide recombination rates among maize lines. Crossover interference analysis using a two-pathway modeling framework reveals a negative association between recombination rate and interference strength.Conclusions: To our knowledge, the present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes. Differences found in recombination rates will allow for selection of high or low recombining lines in crossing programs. Our methodology should pave the way for precise identification of genes controlling recombination rates in maize and other organisms.
UR - http://www.scopus.com/inward/record.url?scp=84884241270&partnerID=8YFLogxK
U2 - 10.1186/gb-2013-14-9-r103
DO - 10.1186/gb-2013-14-9-r103
M3 - Article
C2 - 24050704
AN - SCOPUS:84884241270
SN - 1474-7596
VL - 14
JO - Genome Biology
JF - Genome Biology
IS - 9
M1 - R103
ER -