Interpretable PID parameter tuning for control engineering using general dynamic neural networks: An extensive comparison

Johannes Günther, Elias Reichensdörfer, Patrick M. Pilarski, Klaus Diepold

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Fingerprint

Dive into the research topics of 'Interpretable PID parameter tuning for control engineering using general dynamic neural networks: An extensive comparison'. Together they form a unique fingerprint.

Keyphrases

Chemical Engineering