TY - JOUR
T1 - Interplay of charge and spin fluctuations of strongly interacting electrons on the kagome lattice
AU - Pollmann, Frank
AU - Roychowdhury, Krishanu
AU - Hotta, Chisa
AU - Penc, Karlo
PY - 2014/7/14
Y1 - 2014/7/14
N2 - We study electrons hopping on a kagome lattice at third filling described by an extended Hubbard Hamiltonian with on-site and nearest-neighbor repulsions in the strongly correlated limit. As a consequence of the commensurate filling and the large interactions, each triangle has precisely two electrons in the effective low-energy description, and these electrons form chains of different lengths. The effective Hamiltonian includes the ring exchange around the hexagons as well as the nearest-neighbor Heisenberg interaction. Using large-scale exact diagonalization, we find that the effective model exhibits two phases: If the charge fluctuations are small, the magnetic fluctuations confine the charges to short loops around hexagons, yielding a gapped charge-ordered phase. When the charge fluctuations dominate, the system undergoes a quantum phase transition to a resonating plaquette phase with ordered spins and gapless spin excitations. We find that a peculiar conservation law is fulfilled: the electron in the chains can be divided into two sublattices, and this division is conserved by the ring exchange term.
AB - We study electrons hopping on a kagome lattice at third filling described by an extended Hubbard Hamiltonian with on-site and nearest-neighbor repulsions in the strongly correlated limit. As a consequence of the commensurate filling and the large interactions, each triangle has precisely two electrons in the effective low-energy description, and these electrons form chains of different lengths. The effective Hamiltonian includes the ring exchange around the hexagons as well as the nearest-neighbor Heisenberg interaction. Using large-scale exact diagonalization, we find that the effective model exhibits two phases: If the charge fluctuations are small, the magnetic fluctuations confine the charges to short loops around hexagons, yielding a gapped charge-ordered phase. When the charge fluctuations dominate, the system undergoes a quantum phase transition to a resonating plaquette phase with ordered spins and gapless spin excitations. We find that a peculiar conservation law is fulfilled: the electron in the chains can be divided into two sublattices, and this division is conserved by the ring exchange term.
UR - http://www.scopus.com/inward/record.url?scp=84904597171&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.90.035118
DO - 10.1103/PhysRevB.90.035118
M3 - Article
AN - SCOPUS:84904597171
SN - 1098-0121
VL - 90
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 3
M1 - 035118
ER -